| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrdir | GIF version | ||
| Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
| Ref | Expression |
|---|---|
| dvrdir.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrdir.u | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrdir.p | ⊢ + = (+g‘𝑅) |
| dvrdir.t | ⊢ / = (/r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
| 2 | simpr1 1005 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
| 3 | simpr2 1006 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
| 4 | dvrdir.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | 4 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝐵 = (Base‘𝑅)) |
| 6 | dvrdir.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | 6 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑈 = (Unit‘𝑅)) |
| 8 | ringsrg 13727 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 9 | 8 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ SRing) |
| 10 | simpr3 1007 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
| 11 | eqid 2204 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
| 12 | 6, 11 | unitinvcl 13803 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
| 13 | 10, 12 | syldan 282 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
| 14 | 5, 7, 9, 13 | unitcld 13788 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
| 15 | dvrdir.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 16 | eqid 2204 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 17 | 4, 15, 16 | ringdir 13699 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 18 | 1, 2, 3, 14, 17 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 19 | eqidd 2205 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (.r‘𝑅) = (.r‘𝑅)) | |
| 20 | eqidd 2205 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (invr‘𝑅) = (invr‘𝑅)) | |
| 21 | dvrdir.t | . . . 4 ⊢ / = (/r‘𝑅) | |
| 22 | 21 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → / = (/r‘𝑅)) |
| 23 | ringgrp 13681 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 24 | 23 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Grp) |
| 25 | 4, 15, 24, 2, 3 | grpcld 13264 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) |
| 26 | 5, 19, 7, 20, 22, 1, 25, 10 | dvrvald 13814 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 27 | 5, 19, 7, 20, 22, 1, 2, 10 | dvrvald 13814 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 28 | 5, 19, 7, 20, 22, 1, 3, 10 | dvrvald 13814 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
| 29 | 27, 28 | oveq12d 5952 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
| 30 | 18, 26, 29 | 3eqtr4d 2247 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 +gcplusg 12828 .rcmulr 12829 Grpcgrp 13250 SRingcsrg 13643 Ringcrg 13676 Unitcui 13767 invrcinvr 13800 /rcdvr 13811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-tpos 6321 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-mulr 12842 df-0g 13008 df-mgm 13106 df-sgrp 13152 df-mnd 13167 df-grp 13253 df-minusg 13254 df-cmn 13540 df-abl 13541 df-mgp 13601 df-ur 13640 df-srg 13644 df-ring 13678 df-oppr 13748 df-dvdsr 13769 df-unit 13770 df-invr 13801 df-dvr 13812 |
| This theorem is referenced by: lringuplu 13876 |
| Copyright terms: Public domain | W3C validator |