Step | Hyp | Ref
| Expression |
1 | | simpl 109 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π
β Ring) |
2 | | simpr1 1003 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π β π΅) |
3 | | simpr2 1004 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π β π΅) |
4 | | dvrdir.b |
. . . . 5
β’ π΅ = (Baseβπ
) |
5 | 4 | a1i 9 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π΅ = (Baseβπ
)) |
6 | | dvrdir.u |
. . . . 5
β’ π = (Unitβπ
) |
7 | 6 | a1i 9 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π = (Unitβπ
)) |
8 | | ringsrg 13224 |
. . . . 5
β’ (π
β Ring β π
β SRing) |
9 | 8 | adantr 276 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π
β SRing) |
10 | | simpr3 1005 |
. . . . 5
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π β π) |
11 | | eqid 2177 |
. . . . . 6
β’
(invrβπ
) = (invrβπ
) |
12 | 6, 11 | unitinvcl 13292 |
. . . . 5
β’ ((π
β Ring β§ π β π) β ((invrβπ
)βπ) β π) |
13 | 10, 12 | syldan 282 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((invrβπ
)βπ) β π) |
14 | 5, 7, 9, 13 | unitcld 13277 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((invrβπ
)βπ) β π΅) |
15 | | dvrdir.p |
. . . 4
β’ + =
(+gβπ
) |
16 | | eqid 2177 |
. . . 4
β’
(.rβπ
) = (.rβπ
) |
17 | 4, 15, 16 | ringdir 13202 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ ((invrβπ
)βπ) β π΅)) β ((π + π)(.rβπ
)((invrβπ
)βπ)) = ((π(.rβπ
)((invrβπ
)βπ)) + (π(.rβπ
)((invrβπ
)βπ)))) |
18 | 1, 2, 3, 14, 17 | syl13anc 1240 |
. 2
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((π + π)(.rβπ
)((invrβπ
)βπ)) = ((π(.rβπ
)((invrβπ
)βπ)) + (π(.rβπ
)((invrβπ
)βπ)))) |
19 | | eqidd 2178 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β (.rβπ
) = (.rβπ
)) |
20 | | eqidd 2178 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β (invrβπ
) = (invrβπ
)) |
21 | | dvrdir.t |
. . . 4
β’ / =
(/rβπ
) |
22 | 21 | a1i 9 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β / =
(/rβπ
)) |
23 | | ringgrp 13184 |
. . . . 5
β’ (π
β Ring β π
β Grp) |
24 | 23 | adantr 276 |
. . . 4
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β π
β Grp) |
25 | 4, 15, 24, 2, 3 | grpcld 12890 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β (π + π) β π΅) |
26 | 5, 19, 7, 20, 22, 1, 25, 10 | dvrvald 13303 |
. 2
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((π + π) / π) = ((π + π)(.rβπ
)((invrβπ
)βπ))) |
27 | 5, 19, 7, 20, 22, 1, 2, 10 | dvrvald 13303 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β (π / π) = (π(.rβπ
)((invrβπ
)βπ))) |
28 | 5, 19, 7, 20, 22, 1, 3, 10 | dvrvald 13303 |
. . 3
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β (π / π) = (π(.rβπ
)((invrβπ
)βπ))) |
29 | 27, 28 | oveq12d 5893 |
. 2
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((π / π) + (π / π)) = ((π(.rβπ
)((invrβπ
)βπ)) + (π(.rβπ
)((invrβπ
)βπ)))) |
30 | 18, 26, 29 | 3eqtr4d 2220 |
1
β’ ((π
β Ring β§ (π β π΅ β§ π β π΅ β§ π β π)) β ((π + π) / π) = ((π / π) + (π / π))) |