![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvrdir | GIF version |
Description: Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.) |
Ref | Expression |
---|---|
dvrdir.b | ⊢ 𝐵 = (Base‘𝑅) |
dvrdir.u | ⊢ 𝑈 = (Unit‘𝑅) |
dvrdir.p | ⊢ + = (+g‘𝑅) |
dvrdir.t | ⊢ / = (/r‘𝑅) |
Ref | Expression |
---|---|
dvrdir | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Ring) | |
2 | simpr1 1005 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑋 ∈ 𝐵) | |
3 | simpr2 1006 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑌 ∈ 𝐵) | |
4 | dvrdir.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
5 | 4 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝐵 = (Base‘𝑅)) |
6 | dvrdir.u | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 6 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑈 = (Unit‘𝑅)) |
8 | ringsrg 13543 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
9 | 8 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ SRing) |
10 | simpr3 1007 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑍 ∈ 𝑈) | |
11 | eqid 2193 | . . . . . 6 ⊢ (invr‘𝑅) = (invr‘𝑅) | |
12 | 6, 11 | unitinvcl 13619 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝑈) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
13 | 10, 12 | syldan 282 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝑈) |
14 | 5, 7, 9, 13 | unitcld 13604 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((invr‘𝑅)‘𝑍) ∈ 𝐵) |
15 | dvrdir.p | . . . 4 ⊢ + = (+g‘𝑅) | |
16 | eqid 2193 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
17 | 4, 15, 16 | ringdir 13515 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invr‘𝑅)‘𝑍) ∈ 𝐵)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
18 | 1, 2, 3, 14, 17 | syl13anc 1251 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
19 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (.r‘𝑅) = (.r‘𝑅)) | |
20 | eqidd 2194 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (invr‘𝑅) = (invr‘𝑅)) | |
21 | dvrdir.t | . . . 4 ⊢ / = (/r‘𝑅) | |
22 | 21 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → / = (/r‘𝑅)) |
23 | ringgrp 13497 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
24 | 23 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → 𝑅 ∈ Grp) |
25 | 4, 15, 24, 2, 3 | grpcld 13086 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 + 𝑌) ∈ 𝐵) |
26 | 5, 19, 7, 20, 22, 1, 25, 10 | dvrvald 13630 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 + 𝑌)(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
27 | 5, 19, 7, 20, 22, 1, 2, 10 | dvrvald 13630 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑋 / 𝑍) = (𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
28 | 5, 19, 7, 20, 22, 1, 3, 10 | dvrvald 13630 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → (𝑌 / 𝑍) = (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍))) |
29 | 27, 28 | oveq12d 5936 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 / 𝑍) + (𝑌 / 𝑍)) = ((𝑋(.r‘𝑅)((invr‘𝑅)‘𝑍)) + (𝑌(.r‘𝑅)((invr‘𝑅)‘𝑍)))) |
30 | 18, 26, 29 | 3eqtr4d 2236 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 Grpcgrp 13072 SRingcsrg 13459 Ringcrg 13492 Unitcui 13583 invrcinvr 13616 /rcdvr 13627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-tpos 6298 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-minusg 13076 df-cmn 13356 df-abl 13357 df-mgp 13417 df-ur 13456 df-srg 13460 df-ring 13494 df-oppr 13564 df-dvdsr 13585 df-unit 13586 df-invr 13617 df-dvr 13628 |
This theorem is referenced by: lringuplu 13692 |
Copyright terms: Public domain | W3C validator |