Step | Hyp | Ref
| Expression |
1 | | conjghm.x |
. . 3
⊢ 𝑋 = (Base‘𝐺) |
2 | | conjghm.p |
. . 3
⊢ + =
(+g‘𝐺) |
3 | | simpl 109 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐺 ∈ Grp) |
4 | 3 | adantr 276 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐺 ∈ Grp) |
5 | 1, 2 | grpcl 12968 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) |
6 | 5 | 3expa 1205 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → (𝐴 + 𝑥) ∈ 𝑋) |
7 | | simplr 528 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
8 | | conjghm.m |
. . . . . 6
⊢ − =
(-g‘𝐺) |
9 | 1, 8 | grpsubcl 13039 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
10 | 4, 6, 7, 9 | syl3anc 1249 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐴 + 𝑥) − 𝐴) ∈ 𝑋) |
11 | | conjghm.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) |
12 | 10, 11 | fmptd 5691 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋⟶𝑋) |
13 | 3 | adantr 276 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐺 ∈ Grp) |
14 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
15 | | simprl 529 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
16 | 1, 2, 13, 14, 15 | grpcld 12974 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐴 + 𝑦) ∈ 𝑋) |
17 | 1, 8 | grpsubcl 13039 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) |
18 | 13, 16, 14, 17 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) − 𝐴) ∈ 𝑋) |
19 | | simprr 531 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
20 | 1, 8 | grpsubcl 13039 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝑧 − 𝐴) ∈ 𝑋) |
21 | 13, 19, 14, 20 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑧 − 𝐴) ∈ 𝑋) |
22 | 1, 2 | grpass 12969 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (((𝐴 + 𝑦) − 𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ (𝑧 − 𝐴) ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
23 | 13, 18, 14, 21, 22 | syl13anc 1251 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
24 | 1, 2, 8 | grpnpcan 13051 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) |
25 | 13, 16, 14, 24 | syl3anc 1249 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + 𝐴) = (𝐴 + 𝑦)) |
26 | 25 | oveq1d 5912 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴)) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
27 | 1, 2, 8 | grpaddsubass 13049 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑦) ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
28 | 13, 16, 19, 14, 27 | syl13anc 1251 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + 𝑦) + (𝑧 − 𝐴))) |
29 | 1, 2 | grpass 12969 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) |
30 | 13, 14, 15, 19, 29 | syl13anc 1251 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧))) |
31 | 30 | oveq1d 5912 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) + 𝑧) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
32 | 26, 28, 31 | 3eqtr2rd 2229 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = ((((𝐴 + 𝑦) − 𝐴) + 𝐴) + (𝑧 − 𝐴))) |
33 | 1, 2, 8 | grpaddsubass 13049 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) |
34 | 13, 14, 19, 14, 33 | syl13anc 1251 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) = (𝐴 + (𝑧 − 𝐴))) |
35 | 34 | oveq2d 5913 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴)) = (((𝐴 + 𝑦) − 𝐴) + (𝐴 + (𝑧 − 𝐴)))) |
36 | 23, 32, 35 | 3eqtr4d 2232 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) |
37 | | oveq2 5905 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 𝑧) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝑧))) |
38 | 37 | oveq1d 5912 |
. . . . 5
⊢ (𝑥 = (𝑦 + 𝑧) → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
39 | 1, 2, 13, 15, 19 | grpcld 12974 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦 + 𝑧) ∈ 𝑋) |
40 | 1, 2, 13, 14, 39 | grpcld 12974 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐴 + (𝑦 + 𝑧)) ∈ 𝑋) |
41 | 1, 8 | grpsubcl 13039 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + (𝑦 + 𝑧)) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) ∈ 𝑋) |
42 | 13, 40, 14, 41 | syl3anc 1249 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + (𝑦 + 𝑧)) − 𝐴) ∈ 𝑋) |
43 | 11, 38, 39, 42 | fvmptd3 5630 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) − 𝐴)) |
44 | | oveq2 5905 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) |
45 | 44 | oveq1d 5912 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑦) − 𝐴)) |
46 | 11, 45, 15, 18 | fvmptd3 5630 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = ((𝐴 + 𝑦) − 𝐴)) |
47 | | oveq2 5905 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝐴 + 𝑥) = (𝐴 + 𝑧)) |
48 | 47 | oveq1d 5912 |
. . . . . 6
⊢ (𝑥 = 𝑧 → ((𝐴 + 𝑥) − 𝐴) = ((𝐴 + 𝑧) − 𝐴)) |
49 | 1, 2, 13, 14, 19 | grpcld 12974 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐴 + 𝑧) ∈ 𝑋) |
50 | 1, 8 | grpsubcl 13039 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ (𝐴 + 𝑧) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → ((𝐴 + 𝑧) − 𝐴) ∈ 𝑋) |
51 | 13, 49, 14, 50 | syl3anc 1249 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐴 + 𝑧) − 𝐴) ∈ 𝑋) |
52 | 11, 48, 19, 51 | fvmptd3 5630 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = ((𝐴 + 𝑧) − 𝐴)) |
53 | 46, 52 | oveq12d 5915 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦) + (𝐹‘𝑧)) = (((𝐴 + 𝑦) − 𝐴) + ((𝐴 + 𝑧) − 𝐴))) |
54 | 36, 43, 53 | 3eqtr4d 2232 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹‘𝑦) + (𝐹‘𝑧))) |
55 | 1, 1, 2, 2, 3, 3, 12, 54 | isghmd 13208 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐺)) |
56 | 3 | adantr 276 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐺 ∈ Grp) |
57 | | eqid 2189 |
. . . . . 6
⊢
(invg‘𝐺) = (invg‘𝐺) |
58 | 1, 57 | grpinvcl 13007 |
. . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
59 | 58 | adantr 276 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
60 | | simpr 110 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝑦 ∈ 𝑋) |
61 | | simplr 528 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
62 | 1, 2, 56, 60, 61 | grpcld 12974 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (𝑦 + 𝐴) ∈ 𝑋) |
63 | 1, 2, 56, 59, 62 | grpcld 12974 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋) |
64 | 3 | adantr 276 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐺 ∈ Grp) |
65 | 62 | adantrl 478 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑦 + 𝐴) ∈ 𝑋) |
66 | 6 | adantrr 479 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐴 + 𝑥) ∈ 𝑋) |
67 | 58 | adantr 276 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((invg‘𝐺)‘𝐴) ∈ 𝑋) |
68 | 1, 2 | grplcan 13021 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝑦 + 𝐴) ∈ 𝑋 ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ ((invg‘𝐺)‘𝐴) ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
69 | 64, 65, 66, 67, 68 | syl13anc 1251 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
70 | | eqid 2189 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
71 | 1, 2, 70, 57 | grplinv 13009 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) |
72 | 71 | adantr 276 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((invg‘𝐺)‘𝐴) + 𝐴) = (0g‘𝐺)) |
73 | 72 | oveq1d 5912 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = ((0g‘𝐺) + 𝑥)) |
74 | | simplr 528 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
75 | | simprl 529 |
. . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
76 | 1, 2 | grpass 12969 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧
(((invg‘𝐺)‘𝐴) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
77 | 64, 67, 74, 75, 76 | syl13anc 1251 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
78 | 1, 2, 70 | grplid 12990 |
. . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝑥 ∈ 𝑋) → ((0g‘𝐺) + 𝑥) = 𝑥) |
79 | 78 | ad2ant2r 509 |
. . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((0g‘𝐺) + 𝑥) = 𝑥) |
80 | 73, 77, 79 | 3eqtr3rd 2231 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑥 = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥))) |
81 | 80 | eqeq2d 2201 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg‘𝐺)‘𝐴) + (𝐴 + 𝑥)))) |
82 | | simprr 531 |
. . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → 𝑦 ∈ 𝑋) |
83 | 1, 2, 8 | grpsubadd 13047 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑥) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
84 | 64, 66, 74, 82, 83 | syl13anc 1251 |
. . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (((𝐴 + 𝑥) − 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥))) |
85 | 69, 81, 84 | 3bitr4d 220 |
. . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → ((((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦)) |
86 | | eqcom 2191 |
. . . 4
⊢ (𝑥 =
(((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥) |
87 | | eqcom 2191 |
. . . 4
⊢ (𝑦 = ((𝐴 + 𝑥) − 𝐴) ↔ ((𝐴 + 𝑥) − 𝐴) = 𝑦) |
88 | 85, 86, 87 | 3bitr4g 223 |
. . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥 = (((invg‘𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ 𝑦 = ((𝐴 + 𝑥) − 𝐴))) |
89 | 11, 10, 63, 88 | f1o2d 6100 |
. 2
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑋–1-1-onto→𝑋) |
90 | 55, 89 | jca 306 |
1
⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) |