ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  conjghm GIF version

Theorem conjghm 13808
Description: Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjghm.f 𝐹 = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjghm ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋1-1-onto𝑋))
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjghm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 conjghm.x . . 3 𝑋 = (Base‘𝐺)
2 conjghm.p . . 3 + = (+g𝐺)
3 simpl 109 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐺 ∈ Grp)
43adantr 276 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐺 ∈ Grp)
51, 2grpcl 13536 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑥𝑋) → (𝐴 + 𝑥) ∈ 𝑋)
653expa 1227 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → (𝐴 + 𝑥) ∈ 𝑋)
7 simplr 528 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → 𝐴𝑋)
8 conjghm.m . . . . . 6 = (-g𝐺)
91, 8grpsubcl 13608 . . . . 5 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑥) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
104, 6, 7, 9syl3anc 1271 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑥𝑋) → ((𝐴 + 𝑥) 𝐴) ∈ 𝑋)
11 conjghm.f . . . 4 𝐹 = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
1210, 11fmptd 5788 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:𝑋𝑋)
133adantr 276 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝐺 ∈ Grp)
14 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝐴𝑋)
15 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝑦𝑋)
161, 2, 13, 14, 15grpcld 13542 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐴 + 𝑦) ∈ 𝑋)
171, 8grpsubcl 13608 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑦) 𝐴) ∈ 𝑋)
1813, 16, 14, 17syl3anc 1271 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) 𝐴) ∈ 𝑋)
19 simprr 531 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 𝑧𝑋)
201, 8grpsubcl 13608 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑧𝑋𝐴𝑋) → (𝑧 𝐴) ∈ 𝑋)
2113, 19, 14, 20syl3anc 1271 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑧 𝐴) ∈ 𝑋)
221, 2grpass 13537 . . . . . 6 ((𝐺 ∈ Grp ∧ (((𝐴 + 𝑦) 𝐴) ∈ 𝑋𝐴𝑋 ∧ (𝑧 𝐴) ∈ 𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
2313, 18, 14, 21, 22syl13anc 1273 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
241, 2, 8grpnpcan 13620 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑦) ∈ 𝑋𝐴𝑋) → (((𝐴 + 𝑦) 𝐴) + 𝐴) = (𝐴 + 𝑦))
2513, 16, 14, 24syl3anc 1271 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) 𝐴) + 𝐴) = (𝐴 + 𝑦))
2625oveq1d 6015 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
271, 2, 8grpaddsubass 13618 . . . . . . 7 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑦) ∈ 𝑋𝑧𝑋𝐴𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
2813, 16, 19, 14, 27syl13anc 1273 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + 𝑦) + (𝑧 𝐴)))
291, 2grpass 13537 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧)))
3013, 14, 15, 19, 29syl13anc 1273 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑦) + 𝑧) = (𝐴 + (𝑦 + 𝑧)))
3130oveq1d 6015 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) + 𝑧) 𝐴) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
3226, 28, 313eqtr2rd 2269 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) = ((((𝐴 + 𝑦) 𝐴) + 𝐴) + (𝑧 𝐴)))
331, 2, 8grpaddsubass 13618 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐴𝑋𝑧𝑋𝐴𝑋)) → ((𝐴 + 𝑧) 𝐴) = (𝐴 + (𝑧 𝐴)))
3413, 14, 19, 14, 33syl13anc 1273 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑧) 𝐴) = (𝐴 + (𝑧 𝐴)))
3534oveq2d 6016 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)) = (((𝐴 + 𝑦) 𝐴) + (𝐴 + (𝑧 𝐴))))
3623, 32, 353eqtr4d 2272 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) = (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)))
37 oveq2 6008 . . . . . 6 (𝑥 = (𝑦 + 𝑧) → (𝐴 + 𝑥) = (𝐴 + (𝑦 + 𝑧)))
3837oveq1d 6015 . . . . 5 (𝑥 = (𝑦 + 𝑧) → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
391, 2, 13, 15, 19grpcld 13542 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦 + 𝑧) ∈ 𝑋)
401, 2, 13, 14, 39grpcld 13542 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐴 + (𝑦 + 𝑧)) ∈ 𝑋)
411, 8grpsubcl 13608 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + (𝑦 + 𝑧)) ∈ 𝑋𝐴𝑋) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) ∈ 𝑋)
4213, 40, 14, 41syl3anc 1271 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + (𝑦 + 𝑧)) 𝐴) ∈ 𝑋)
4311, 38, 39, 42fvmptd3 5727 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐴 + (𝑦 + 𝑧)) 𝐴))
44 oveq2 6008 . . . . . . 7 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
4544oveq1d 6015 . . . . . 6 (𝑥 = 𝑦 → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + 𝑦) 𝐴))
4611, 45, 15, 18fvmptd3 5727 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = ((𝐴 + 𝑦) 𝐴))
47 oveq2 6008 . . . . . . 7 (𝑥 = 𝑧 → (𝐴 + 𝑥) = (𝐴 + 𝑧))
4847oveq1d 6015 . . . . . 6 (𝑥 = 𝑧 → ((𝐴 + 𝑥) 𝐴) = ((𝐴 + 𝑧) 𝐴))
491, 2, 13, 14, 19grpcld 13542 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐴 + 𝑧) ∈ 𝑋)
501, 8grpsubcl 13608 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝐴 + 𝑧) ∈ 𝑋𝐴𝑋) → ((𝐴 + 𝑧) 𝐴) ∈ 𝑋)
5113, 49, 14, 50syl3anc 1271 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐴 + 𝑧) 𝐴) ∈ 𝑋)
5211, 48, 19, 51fvmptd3 5727 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = ((𝐴 + 𝑧) 𝐴))
5346, 52oveq12d 6018 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦) + (𝐹𝑧)) = (((𝐴 + 𝑦) 𝐴) + ((𝐴 + 𝑧) 𝐴)))
5436, 43, 533eqtr4d 2272 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦 + 𝑧)) = ((𝐹𝑦) + (𝐹𝑧)))
551, 1, 2, 2, 3, 3, 12, 54isghmd 13784 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐺))
563adantr 276 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐺 ∈ Grp)
57 eqid 2229 . . . . . 6 (invg𝐺) = (invg𝐺)
581, 57grpinvcl 13576 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
5958adantr 276 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((invg𝐺)‘𝐴) ∈ 𝑋)
60 simpr 110 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝑦𝑋)
61 simplr 528 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → 𝐴𝑋)
621, 2, 56, 60, 61grpcld 13542 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → (𝑦 + 𝐴) ∈ 𝑋)
631, 2, 56, 59, 62grpcld 13542 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ∈ 𝑋)
643adantr 276 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝐺 ∈ Grp)
6562adantrl 478 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑦 + 𝐴) ∈ 𝑋)
666adantrr 479 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝐴 + 𝑥) ∈ 𝑋)
6758adantr 276 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((invg𝐺)‘𝐴) ∈ 𝑋)
681, 2grplcan 13590 . . . . . 6 ((𝐺 ∈ Grp ∧ ((𝑦 + 𝐴) ∈ 𝑋 ∧ (𝐴 + 𝑥) ∈ 𝑋 ∧ ((invg𝐺)‘𝐴) ∈ 𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
6964, 65, 66, 67, 68syl13anc 1273 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)) ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
70 eqid 2229 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
711, 2, 70, 57grplinv 13578 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (((invg𝐺)‘𝐴) + 𝐴) = (0g𝐺))
7271adantr 276 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((invg𝐺)‘𝐴) + 𝐴) = (0g𝐺))
7372oveq1d 6015 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = ((0g𝐺) + 𝑥))
74 simplr 528 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝐴𝑋)
75 simprl 529 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥𝑋)
761, 2grpass 13537 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝐴) ∈ 𝑋𝐴𝑋𝑥𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
7764, 67, 74, 75, 76syl13anc 1273 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + 𝐴) + 𝑥) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
781, 2, 70grplid 13559 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑥𝑋) → ((0g𝐺) + 𝑥) = 𝑥)
7978ad2ant2r 509 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((0g𝐺) + 𝑥) = 𝑥)
8073, 77, 793eqtr3rd 2271 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑥 = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥)))
8180eqeq2d 2241 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = (((invg𝐺)‘𝐴) + (𝐴 + 𝑥))))
82 simprr 531 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → 𝑦𝑋)
831, 2, 8grpsubadd 13616 . . . . . 6 ((𝐺 ∈ Grp ∧ ((𝐴 + 𝑥) ∈ 𝑋𝐴𝑋𝑦𝑋)) → (((𝐴 + 𝑥) 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
8464, 66, 74, 82, 83syl13anc 1273 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (((𝐴 + 𝑥) 𝐴) = 𝑦 ↔ (𝑦 + 𝐴) = (𝐴 + 𝑥)))
8569, 81, 843bitr4d 220 . . . 4 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → ((((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥 ↔ ((𝐴 + 𝑥) 𝐴) = 𝑦))
86 eqcom 2231 . . . 4 (𝑥 = (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) = 𝑥)
87 eqcom 2231 . . . 4 (𝑦 = ((𝐴 + 𝑥) 𝐴) ↔ ((𝐴 + 𝑥) 𝐴) = 𝑦)
8885, 86, 873bitr4g 223 . . 3 (((𝐺 ∈ Grp ∧ 𝐴𝑋) ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 = (((invg𝐺)‘𝐴) + (𝑦 + 𝐴)) ↔ 𝑦 = ((𝐴 + 𝑥) 𝐴)))
8911, 10, 63, 88f1o2d 6209 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → 𝐹:𝑋1-1-onto𝑋)
9055, 89jca 306 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋1-1-onto𝑋))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  cmpt 4144  1-1-ontowf1o 5316  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  0gc0g 13284  Grpcgrp 13528  invgcminusg 13529  -gcsg 13530   GrpHom cghm 13772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-sbg 13533  df-ghm 13773
This theorem is referenced by:  conjsubg  13809  conjsubgen  13810
  Copyright terms: Public domain W3C validator