ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mplsubgfilemcl GIF version

Theorem mplsubgfilemcl 14333
Description: Lemma for mplsubgfi 14335. The sum of two polynomials is a polynomial. (Contributed by Jim Kingdon, 26-Nov-2025.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼 ∈ Fin)
mplsubg.r (𝜑𝑅 ∈ Grp)
mplsubgfilemcl.x (𝜑𝑋𝑈)
mplsubgfilemcl.y (𝜑𝑌𝑈)
mplsubgfilemcl.p + = (+g𝑆)
Assertion
Ref Expression
mplsubgfilemcl (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)

Proof of Theorem mplsubgfilemcl
Dummy variables 𝑎 𝑏 𝑝 𝑞 𝑘 𝑐 𝑑 𝑢 𝑣 𝑒 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2196 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 mplsubgfilemcl.p . . 3 + = (+g𝑆)
4 mplsubg.r . . . 4 (𝜑𝑅 ∈ Grp)
54grpmgmd 13230 . . 3 (𝜑𝑅 ∈ Mgm)
6 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
7 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
86, 1, 7, 2mplbasss 14330 . . . 4 𝑈 ⊆ (Base‘𝑆)
9 mplsubgfilemcl.x . . . 4 (𝜑𝑋𝑈)
108, 9sselid 3182 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
11 mplsubgfilemcl.y . . . 4 (𝜑𝑌𝑈)
128, 11sselid 3182 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
131, 2, 3, 5, 10, 12psraddcl 14314 . 2 (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑆))
14 mplsubg.i . . . . . 6 (𝜑𝐼 ∈ Fin)
15 eqid 2196 . . . . . . 7 (0g𝑅) = (0g𝑅)
166, 1, 2, 15, 7mplelbascoe 14326 . . . . . 6 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0𝑚 𝐼)∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))))
1714, 4, 16syl2anc 411 . . . . 5 (𝜑 → (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0𝑚 𝐼)∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))))
189, 17mpbid 147 . . . 4 (𝜑 → (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0𝑚 𝐼)∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅))))
1918simprd 114 . . 3 (𝜑 → ∃𝑝 ∈ (ℕ0𝑚 𝐼)∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))
206, 1, 2, 15, 7mplelbascoe 14326 . . . . . . . 8 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0𝑚 𝐼)∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))))
2114, 4, 20syl2anc 411 . . . . . . 7 (𝜑 → (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0𝑚 𝐼)∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))))
2211, 21mpbid 147 . . . . . 6 (𝜑 → (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0𝑚 𝐼)∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅))))
2322simprd 114 . . . . 5 (𝜑 → ∃𝑞 ∈ (ℕ0𝑚 𝐼)∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))
2423adantr 276 . . . 4 ((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) → ∃𝑞 ∈ (ℕ0𝑚 𝐼)∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))
25 nn0addcl 9303 . . . . . . . 8 ((𝑐 ∈ ℕ0𝑑 ∈ ℕ0) → (𝑐 + 𝑑) ∈ ℕ0)
2625adantl 277 . . . . . . 7 ((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ (𝑐 ∈ ℕ0𝑑 ∈ ℕ0)) → (𝑐 + 𝑑) ∈ ℕ0)
27 simplrl 535 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → 𝑝 ∈ (ℕ0𝑚 𝐼))
28 nn0ex 9274 . . . . . . . . . . 11 0 ∈ V
2928a1i 9 . . . . . . . . . 10 (𝜑 → ℕ0 ∈ V)
3029, 14elmapd 6730 . . . . . . . . 9 (𝜑 → (𝑝 ∈ (ℕ0𝑚 𝐼) ↔ 𝑝:𝐼⟶ℕ0))
3130ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → (𝑝 ∈ (ℕ0𝑚 𝐼) ↔ 𝑝:𝐼⟶ℕ0))
3227, 31mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → 𝑝:𝐼⟶ℕ0)
33 simprl 529 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → 𝑞 ∈ (ℕ0𝑚 𝐼))
3429, 14elmapd 6730 . . . . . . . . 9 (𝜑 → (𝑞 ∈ (ℕ0𝑚 𝐼) ↔ 𝑞:𝐼⟶ℕ0))
3534ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → (𝑞 ∈ (ℕ0𝑚 𝐼) ↔ 𝑞:𝐼⟶ℕ0))
3633, 35mpbid 147 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → 𝑞:𝐼⟶ℕ0)
3714ad2antrr 488 . . . . . . 7 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → 𝐼 ∈ Fin)
38 inidm 3373 . . . . . . 7 (𝐼𝐼) = 𝐼
3926, 32, 36, 37, 37, 38off 6152 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → (𝑝𝑓 + 𝑞):𝐼⟶ℕ0)
4029, 14elmapd 6730 . . . . . . 7 (𝜑 → ((𝑝𝑓 + 𝑞) ∈ (ℕ0𝑚 𝐼) ↔ (𝑝𝑓 + 𝑞):𝐼⟶ℕ0))
4140ad2antrr 488 . . . . . 6 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → ((𝑝𝑓 + 𝑞) ∈ (ℕ0𝑚 𝐼) ↔ (𝑝𝑓 + 𝑞):𝐼⟶ℕ0))
4239, 41mpbird 167 . . . . 5 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → (𝑝𝑓 + 𝑞) ∈ (ℕ0𝑚 𝐼))
43 simp-4l 541 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝜑)
44 simplr 528 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑏 ∈ (ℕ0𝑚 𝐼))
45 eqid 2196 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
461, 2, 45, 3, 10, 12psradd 14313 . . . . . . . . . . . . 13 (𝜑 → (𝑋 + 𝑌) = (𝑋𝑓 (+g𝑅)𝑌))
4746fveq1d 5563 . . . . . . . . . . . 12 (𝜑 → ((𝑋 + 𝑌)‘𝑏) = ((𝑋𝑓 (+g𝑅)𝑌)‘𝑏))
4847adantr 276 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋𝑓 (+g𝑅)𝑌)‘𝑏))
49 eqid 2196 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘𝑅)
501, 49, 14, 2, 10psrelbasfi 14310 . . . . . . . . . . . . 13 (𝜑𝑋:(ℕ0𝑚 𝐼)⟶(Base‘𝑅))
5150ffnd 5411 . . . . . . . . . . . 12 (𝜑𝑋 Fn (ℕ0𝑚 𝐼))
521, 49, 14, 2, 12psrelbasfi 14310 . . . . . . . . . . . . 13 (𝜑𝑌:(ℕ0𝑚 𝐼)⟶(Base‘𝑅))
5352ffnd 5411 . . . . . . . . . . . 12 (𝜑𝑌 Fn (ℕ0𝑚 𝐼))
54 fnmap 6723 . . . . . . . . . . . . 13 𝑚 Fn (V × V)
5514elexd 2776 . . . . . . . . . . . . 13 (𝜑𝐼 ∈ V)
56 fnovex 5958 . . . . . . . . . . . . 13 (( ↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V ∧ 𝐼 ∈ V) → (ℕ0𝑚 𝐼) ∈ V)
5754, 28, 55, 56mp3an12i 1352 . . . . . . . . . . . 12 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
58 inidm 3373 . . . . . . . . . . . 12 ((ℕ0𝑚 𝐼) ∩ (ℕ0𝑚 𝐼)) = (ℕ0𝑚 𝐼)
59 eqidd 2197 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (𝑋𝑏) = (𝑋𝑏))
60 eqidd 2197 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (𝑌𝑏) = (𝑌𝑏))
614adantr 276 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑅 ∈ Grp)
6250ffvelcdmda 5700 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (𝑋𝑏) ∈ (Base‘𝑅))
6352ffvelcdmda 5700 . . . . . . . . . . . . 13 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → (𝑌𝑏) ∈ (Base‘𝑅))
6449, 45, 61, 62, 63grpcld 13218 . . . . . . . . . . . 12 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((𝑋𝑏)(+g𝑅)(𝑌𝑏)) ∈ (Base‘𝑅))
6551, 53, 57, 57, 58, 59, 60, 64ofvalg 6149 . . . . . . . . . . 11 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((𝑋𝑓 (+g𝑅)𝑌)‘𝑏) = ((𝑋𝑏)(+g𝑅)(𝑌𝑏)))
6648, 65eqtrd 2229 . . . . . . . . . 10 ((𝜑𝑏 ∈ (ℕ0𝑚 𝐼)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋𝑏)(+g𝑅)(𝑌𝑏)))
6743, 44, 66syl2anc 411 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋𝑏)(+g𝑅)(𝑌𝑏)))
6832ad3antrrr 492 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → 𝑝:𝐼⟶ℕ0)
69 simpr 110 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → 𝑒𝐼)
7068, 69ffvelcdmd 5701 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) ∈ ℕ0)
7170nn0red 9322 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) ∈ ℝ)
7227ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑝 ∈ (ℕ0𝑚 𝐼))
7330biimpa 296 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 ∈ (ℕ0𝑚 𝐼)) → 𝑝:𝐼⟶ℕ0)
7473ffnd 5411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 ∈ (ℕ0𝑚 𝐼)) → 𝑝 Fn 𝐼)
7543, 72, 74syl2anc 411 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑝 Fn 𝐼)
7633ad2antrr 488 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑞 ∈ (ℕ0𝑚 𝐼))
7734biimpa 296 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞 ∈ (ℕ0𝑚 𝐼)) → 𝑞:𝐼⟶ℕ0)
7877ffnd 5411 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞 ∈ (ℕ0𝑚 𝐼)) → 𝑞 Fn 𝐼)
7943, 76, 78syl2anc 411 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑞 Fn 𝐼)
8037ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝐼 ∈ Fin)
81 eqidd 2197 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) = (𝑝𝑒))
82 eqidd 2197 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) = (𝑞𝑒))
8336ad3antrrr 492 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → 𝑞:𝐼⟶ℕ0)
8483, 69ffvelcdmd 5701 . . . . . . . . . . . . . . . . . 18 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) ∈ ℕ0)
8570, 84nn0addcld 9325 . . . . . . . . . . . . . . . . 17 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ((𝑝𝑒) + (𝑞𝑒)) ∈ ℕ0)
8675, 79, 80, 80, 38, 81, 82, 85ofvalg 6149 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ((𝑝𝑓 + 𝑞)‘𝑒) = ((𝑝𝑒) + (𝑞𝑒)))
8786, 85eqeltrd 2273 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ((𝑝𝑓 + 𝑞)‘𝑒) ∈ ℕ0)
8887nn0red 9322 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ((𝑝𝑓 + 𝑞)‘𝑒) ∈ ℝ)
89 elmapi 6738 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ (ℕ0𝑚 𝐼) → 𝑏:𝐼⟶ℕ0)
9089adantl 277 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) → 𝑏:𝐼⟶ℕ0)
9190ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → 𝑏:𝐼⟶ℕ0)
9291, 69ffvelcdmd 5701 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑏𝑒) ∈ ℕ0)
9392nn0red 9322 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑏𝑒) ∈ ℝ)
94 nn0addge1 9314 . . . . . . . . . . . . . . . 16 (((𝑝𝑒) ∈ ℝ ∧ (𝑞𝑒) ∈ ℕ0) → (𝑝𝑒) ≤ ((𝑝𝑒) + (𝑞𝑒)))
9571, 84, 94syl2anc 411 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) ≤ ((𝑝𝑒) + (𝑞𝑒)))
9695, 86breqtrrd 4062 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) ≤ ((𝑝𝑓 + 𝑞)‘𝑒))
97 fveq2 5561 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑒 → ((𝑝𝑓 + 𝑞)‘𝑘) = ((𝑝𝑓 + 𝑞)‘𝑒))
98 fveq2 5561 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑒 → (𝑏𝑘) = (𝑏𝑒))
9997, 98breq12d 4047 . . . . . . . . . . . . . . 15 (𝑘 = 𝑒 → (((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘) ↔ ((𝑝𝑓 + 𝑞)‘𝑒) < (𝑏𝑒)))
100 simplr 528 . . . . . . . . . . . . . . 15 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘))
10199, 100, 69rspcdva 2873 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → ((𝑝𝑓 + 𝑞)‘𝑒) < (𝑏𝑒))
10271, 88, 93, 96, 101lelttrd 8170 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑝𝑒) < (𝑏𝑒))
103102ralrimiva 2570 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑒𝐼 (𝑝𝑒) < (𝑏𝑒))
104 fveq2 5561 . . . . . . . . . . . . . 14 (𝑣 = 𝑒 → (𝑝𝑣) = (𝑝𝑒))
105 fveq2 5561 . . . . . . . . . . . . . 14 (𝑣 = 𝑒 → (𝑏𝑣) = (𝑏𝑒))
106104, 105breq12d 4047 . . . . . . . . . . . . 13 (𝑣 = 𝑒 → ((𝑝𝑣) < (𝑏𝑣) ↔ (𝑝𝑒) < (𝑏𝑒)))
107106cbvralv 2729 . . . . . . . . . . . 12 (∀𝑣𝐼 (𝑝𝑣) < (𝑏𝑣) ↔ ∀𝑒𝐼 (𝑝𝑒) < (𝑏𝑒))
108103, 107sylibr 134 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑣𝐼 (𝑝𝑣) < (𝑏𝑣))
109 fveq1 5560 . . . . . . . . . . . . . . 15 (𝑢 = 𝑏 → (𝑢𝑣) = (𝑏𝑣))
110109breq2d 4046 . . . . . . . . . . . . . 14 (𝑢 = 𝑏 → ((𝑝𝑣) < (𝑢𝑣) ↔ (𝑝𝑣) < (𝑏𝑣)))
111110ralbidv 2497 . . . . . . . . . . . . 13 (𝑢 = 𝑏 → (∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) ↔ ∀𝑣𝐼 (𝑝𝑣) < (𝑏𝑣)))
112 fveqeq2 5570 . . . . . . . . . . . . 13 (𝑢 = 𝑏 → ((𝑋𝑢) = (0g𝑅) ↔ (𝑋𝑏) = (0g𝑅)))
113111, 112imbi12d 234 . . . . . . . . . . . 12 (𝑢 = 𝑏 → ((∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)) ↔ (∀𝑣𝐼 (𝑝𝑣) < (𝑏𝑣) → (𝑋𝑏) = (0g𝑅))))
114 simprr 531 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) → ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))
115114ad3antrrr 492 . . . . . . . . . . . 12 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))
116113, 115, 44rspcdva 2873 . . . . . . . . . . 11 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → (∀𝑣𝐼 (𝑝𝑣) < (𝑏𝑣) → (𝑋𝑏) = (0g𝑅)))
117108, 116mpd 13 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → (𝑋𝑏) = (0g𝑅))
118117oveq1d 5940 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ((𝑋𝑏)(+g𝑅)(𝑌𝑏)) = ((0g𝑅)(+g𝑅)(𝑌𝑏)))
11967, 118eqtrd 2229 . . . . . . . 8 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ((𝑋 + 𝑌)‘𝑏) = ((0g𝑅)(+g𝑅)(𝑌𝑏)))
12043, 4syl 14 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → 𝑅 ∈ Grp)
12143, 44, 63syl2anc 411 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → (𝑌𝑏) ∈ (Base‘𝑅))
12249, 45, 15, 120, 121grplidd 13237 . . . . . . . 8 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ((0g𝑅)(+g𝑅)(𝑌𝑏)) = (𝑌𝑏))
12384nn0red 9322 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) ∈ ℝ)
124 nn0addge2 9315 . . . . . . . . . . . . . 14 (((𝑞𝑒) ∈ ℝ ∧ (𝑝𝑒) ∈ ℕ0) → (𝑞𝑒) ≤ ((𝑝𝑒) + (𝑞𝑒)))
125123, 70, 124syl2anc 411 . . . . . . . . . . . . 13 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) ≤ ((𝑝𝑒) + (𝑞𝑒)))
126125, 86breqtrrd 4062 . . . . . . . . . . . 12 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) ≤ ((𝑝𝑓 + 𝑞)‘𝑒))
127123, 88, 93, 126, 101lelttrd 8170 . . . . . . . . . . 11 ((((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) ∧ 𝑒𝐼) → (𝑞𝑒) < (𝑏𝑒))
128127ralrimiva 2570 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑒𝐼 (𝑞𝑒) < (𝑏𝑒))
129 fveq2 5561 . . . . . . . . . . . 12 (𝑡 = 𝑒 → (𝑞𝑡) = (𝑞𝑒))
130 fveq2 5561 . . . . . . . . . . . 12 (𝑡 = 𝑒 → (𝑏𝑡) = (𝑏𝑒))
131129, 130breq12d 4047 . . . . . . . . . . 11 (𝑡 = 𝑒 → ((𝑞𝑡) < (𝑏𝑡) ↔ (𝑞𝑒) < (𝑏𝑒)))
132131cbvralv 2729 . . . . . . . . . 10 (∀𝑡𝐼 (𝑞𝑡) < (𝑏𝑡) ↔ ∀𝑒𝐼 (𝑞𝑒) < (𝑏𝑒))
133128, 132sylibr 134 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑡𝐼 (𝑞𝑡) < (𝑏𝑡))
134 fveq1 5560 . . . . . . . . . . . . 13 (𝑠 = 𝑏 → (𝑠𝑡) = (𝑏𝑡))
135134breq2d 4046 . . . . . . . . . . . 12 (𝑠 = 𝑏 → ((𝑞𝑡) < (𝑠𝑡) ↔ (𝑞𝑡) < (𝑏𝑡)))
136135ralbidv 2497 . . . . . . . . . . 11 (𝑠 = 𝑏 → (∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) ↔ ∀𝑡𝐼 (𝑞𝑡) < (𝑏𝑡)))
137 fveqeq2 5570 . . . . . . . . . . 11 (𝑠 = 𝑏 → ((𝑌𝑠) = (0g𝑅) ↔ (𝑌𝑏) = (0g𝑅)))
138136, 137imbi12d 234 . . . . . . . . . 10 (𝑠 = 𝑏 → ((∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)) ↔ (∀𝑡𝐼 (𝑞𝑡) < (𝑏𝑡) → (𝑌𝑏) = (0g𝑅))))
139 simprr 531 . . . . . . . . . . 11 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))
140139ad2antrr 488 . . . . . . . . . 10 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))
141138, 140, 44rspcdva 2873 . . . . . . . . 9 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → (∀𝑡𝐼 (𝑞𝑡) < (𝑏𝑡) → (𝑌𝑏) = (0g𝑅)))
142133, 141mpd 13 . . . . . . . 8 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → (𝑌𝑏) = (0g𝑅))
143119, 122, 1423eqtrd 2233 . . . . . . 7 (((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) ∧ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅))
144143ex 115 . . . . . 6 ((((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) ∧ 𝑏 ∈ (ℕ0𝑚 𝐼)) → (∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
145144ralrimiva 2570 . . . . 5 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
146 fveq1 5560 . . . . . . . 8 (𝑎 = (𝑝𝑓 + 𝑞) → (𝑎𝑘) = ((𝑝𝑓 + 𝑞)‘𝑘))
147146breq1d 4044 . . . . . . 7 (𝑎 = (𝑝𝑓 + 𝑞) → ((𝑎𝑘) < (𝑏𝑘) ↔ ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)))
148147ralbidv 2497 . . . . . 6 (𝑎 = (𝑝𝑓 + 𝑞) → (∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) ↔ ∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘)))
149148rspceaimv 2876 . . . . 5 (((𝑝𝑓 + 𝑞) ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 ((𝑝𝑓 + 𝑞)‘𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅))) → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
15042, 145, 149syl2anc 411 . . . 4 (((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) ∧ (𝑞 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0𝑚 𝐼)(∀𝑡𝐼 (𝑞𝑡) < (𝑠𝑡) → (𝑌𝑠) = (0g𝑅)))) → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
15124, 150rexlimddv 2619 . . 3 ((𝜑 ∧ (𝑝 ∈ (ℕ0𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0𝑚 𝐼)(∀𝑣𝐼 (𝑝𝑣) < (𝑢𝑣) → (𝑋𝑢) = (0g𝑅)))) → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
15219, 151rexlimddv 2619 . 2 (𝜑 → ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))
1536, 1, 2, 15, 7mplelbascoe 14326 . . 3 ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → ((𝑋 + 𝑌) ∈ 𝑈 ↔ ((𝑋 + 𝑌) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))))
15414, 4, 153syl2anc 411 . 2 (𝜑 → ((𝑋 + 𝑌) ∈ 𝑈 ↔ ((𝑋 + 𝑌) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0𝑚 𝐼)∀𝑏 ∈ (ℕ0𝑚 𝐼)(∀𝑘𝐼 (𝑎𝑘) < (𝑏𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g𝑅)))))
15513, 152, 154mpbir2and 946 1 (𝜑 → (𝑋 + 𝑌) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763   class class class wbr 4034   × cxp 4662   Fn wfn 5254  wf 5255  cfv 5259  (class class class)co 5925  𝑓 cof 6137  𝑚 cmap 6716  Fincfn 6808  cr 7897   + caddc 7901   < clt 8080  cle 8081  0cn0 9268  Basecbs 12705  +gcplusg 12782  0gc0g 12960  Grpcgrp 13204   mPwSer cmps 14295   mPoly cmpl 14296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-1o 6483  df-er 6601  df-map 6718  df-ixp 6767  df-en 6809  df-fin 6811  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-9 9075  df-n0 9269  df-z 9346  df-uz 9621  df-fz 10103  df-struct 12707  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-tset 12801  df-rest 12945  df-topn 12946  df-0g 12962  df-topgen 12964  df-pt 12965  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-psr 14297  df-mplcoe 14298
This theorem is referenced by:  mplsubgfi  14335
  Copyright terms: Public domain W3C validator