| Step | Hyp | Ref
| Expression |
| 1 | | mplsubg.s |
. . 3
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | eqid 2196 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | mplsubgfilemcl.p |
. . 3
⊢ + =
(+g‘𝑆) |
| 4 | | mplsubg.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Grp) |
| 5 | 4 | grpmgmd 13230 |
. . 3
⊢ (𝜑 → 𝑅 ∈ Mgm) |
| 6 | | mplsubg.p |
. . . . 5
⊢ 𝑃 = (𝐼 mPoly 𝑅) |
| 7 | | mplsubg.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
| 8 | 6, 1, 7, 2 | mplbasss 14330 |
. . . 4
⊢ 𝑈 ⊆ (Base‘𝑆) |
| 9 | | mplsubgfilemcl.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 10 | 8, 9 | sselid 3182 |
. . 3
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑆)) |
| 11 | | mplsubgfilemcl.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑈) |
| 12 | 8, 11 | sselid 3182 |
. . 3
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑆)) |
| 13 | 1, 2, 3, 5, 10, 12 | psraddcl 14314 |
. 2
⊢ (𝜑 → (𝑋 + 𝑌) ∈ (Base‘𝑆)) |
| 14 | | mplsubg.i |
. . . . . 6
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 15 | | eqid 2196 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 16 | 6, 1, 2, 15, 7 | mplelbascoe 14326 |
. . . . . 6
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0
↑𝑚 𝐼)∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅))))) |
| 17 | 14, 4, 16 | syl2anc 411 |
. . . . 5
⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0
↑𝑚 𝐼)∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅))))) |
| 18 | 9, 17 | mpbid 147 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ (Base‘𝑆) ∧ ∃𝑝 ∈ (ℕ0
↑𝑚 𝐼)∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) |
| 19 | 18 | simprd 114 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ (ℕ0
↑𝑚 𝐼)∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅))) |
| 20 | 6, 1, 2, 15, 7 | mplelbascoe 14326 |
. . . . . . . 8
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → (𝑌 ∈ 𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0
↑𝑚 𝐼)∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))))) |
| 21 | 14, 4, 20 | syl2anc 411 |
. . . . . . 7
⊢ (𝜑 → (𝑌 ∈ 𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0
↑𝑚 𝐼)∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))))) |
| 22 | 11, 21 | mpbid 147 |
. . . . . 6
⊢ (𝜑 → (𝑌 ∈ (Base‘𝑆) ∧ ∃𝑞 ∈ (ℕ0
↑𝑚 𝐼)∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) |
| 23 | 22 | simprd 114 |
. . . . 5
⊢ (𝜑 → ∃𝑞 ∈ (ℕ0
↑𝑚 𝐼)∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))) |
| 24 | 23 | adantr 276 |
. . . 4
⊢ ((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) → ∃𝑞 ∈ (ℕ0
↑𝑚 𝐼)∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))) |
| 25 | | nn0addcl 9303 |
. . . . . . . 8
⊢ ((𝑐 ∈ ℕ0
∧ 𝑑 ∈
ℕ0) → (𝑐 + 𝑑) ∈
ℕ0) |
| 26 | 25 | adantl 277 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ (𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0))
→ (𝑐 + 𝑑) ∈
ℕ0) |
| 27 | | simplrl 535 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → 𝑝 ∈ (ℕ0
↑𝑚 𝐼)) |
| 28 | | nn0ex 9274 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 29 | 28 | a1i 9 |
. . . . . . . . . 10
⊢ (𝜑 → ℕ0 ∈
V) |
| 30 | 29, 14 | elmapd 6730 |
. . . . . . . . 9
⊢ (𝜑 → (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ↔ 𝑝:𝐼⟶ℕ0)) |
| 31 | 30 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ↔ 𝑝:𝐼⟶ℕ0)) |
| 32 | 27, 31 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → 𝑝:𝐼⟶ℕ0) |
| 33 | | simprl 529 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → 𝑞 ∈ (ℕ0
↑𝑚 𝐼)) |
| 34 | 29, 14 | elmapd 6730 |
. . . . . . . . 9
⊢ (𝜑 → (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ↔ 𝑞:𝐼⟶ℕ0)) |
| 35 | 34 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ↔ 𝑞:𝐼⟶ℕ0)) |
| 36 | 33, 35 | mpbid 147 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → 𝑞:𝐼⟶ℕ0) |
| 37 | 14 | ad2antrr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → 𝐼 ∈ Fin) |
| 38 | | inidm 3373 |
. . . . . . 7
⊢ (𝐼 ∩ 𝐼) = 𝐼 |
| 39 | 26, 32, 36, 37, 37, 38 | off 6152 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → (𝑝 ∘𝑓 + 𝑞):𝐼⟶ℕ0) |
| 40 | 29, 14 | elmapd 6730 |
. . . . . . 7
⊢ (𝜑 → ((𝑝 ∘𝑓 + 𝑞) ∈ (ℕ0
↑𝑚 𝐼) ↔ (𝑝 ∘𝑓 + 𝑞):𝐼⟶ℕ0)) |
| 41 | 40 | ad2antrr 488 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → ((𝑝 ∘𝑓 + 𝑞) ∈ (ℕ0
↑𝑚 𝐼) ↔ (𝑝 ∘𝑓 + 𝑞):𝐼⟶ℕ0)) |
| 42 | 39, 41 | mpbird 167 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → (𝑝 ∘𝑓 + 𝑞) ∈ (ℕ0
↑𝑚 𝐼)) |
| 43 | | simp-4l 541 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝜑) |
| 44 | | simplr 528 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) |
| 45 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 46 | 1, 2, 45, 3, 10, 12 | psradd 14313 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑋 + 𝑌) = (𝑋 ∘𝑓
(+g‘𝑅)𝑌)) |
| 47 | 46 | fveq1d 5563 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑋 + 𝑌)‘𝑏) = ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑏)) |
| 48 | 47 | adantr 276 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑏)) |
| 49 | | eqid 2196 |
. . . . . . . . . . . . . 14
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 50 | 1, 49, 14, 2, 10 | psrelbasfi 14310 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋:(ℕ0
↑𝑚 𝐼)⟶(Base‘𝑅)) |
| 51 | 50 | ffnd 5411 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑋 Fn (ℕ0
↑𝑚 𝐼)) |
| 52 | 1, 49, 14, 2, 12 | psrelbasfi 14310 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌:(ℕ0
↑𝑚 𝐼)⟶(Base‘𝑅)) |
| 53 | 52 | ffnd 5411 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 Fn (ℕ0
↑𝑚 𝐼)) |
| 54 | | fnmap 6723 |
. . . . . . . . . . . . 13
⊢
↑𝑚 Fn (V × V) |
| 55 | 14 | elexd 2776 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐼 ∈ V) |
| 56 | | fnovex 5958 |
. . . . . . . . . . . . 13
⊢ ((
↑𝑚 Fn (V × V) ∧ ℕ0 ∈ V
∧ 𝐼 ∈ V) →
(ℕ0 ↑𝑚 𝐼) ∈ V) |
| 57 | 54, 28, 55, 56 | mp3an12i 1352 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
| 58 | | inidm 3373 |
. . . . . . . . . . . 12
⊢
((ℕ0 ↑𝑚 𝐼) ∩ (ℕ0
↑𝑚 𝐼)) = (ℕ0
↑𝑚 𝐼) |
| 59 | | eqidd 2197 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (𝑋‘𝑏) = (𝑋‘𝑏)) |
| 60 | | eqidd 2197 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (𝑌‘𝑏) = (𝑌‘𝑏)) |
| 61 | 4 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑅 ∈ Grp) |
| 62 | 50 | ffvelcdmda 5700 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (𝑋‘𝑏) ∈ (Base‘𝑅)) |
| 63 | 52 | ffvelcdmda 5700 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (𝑌‘𝑏) ∈ (Base‘𝑅)) |
| 64 | 49, 45, 61, 62, 63 | grpcld 13218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((𝑋‘𝑏)(+g‘𝑅)(𝑌‘𝑏)) ∈ (Base‘𝑅)) |
| 65 | 51, 53, 57, 57, 58, 59, 60, 64 | ofvalg 6149 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((𝑋 ∘𝑓
(+g‘𝑅)𝑌)‘𝑏) = ((𝑋‘𝑏)(+g‘𝑅)(𝑌‘𝑏))) |
| 66 | 48, 65 | eqtrd 2229 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋‘𝑏)(+g‘𝑅)(𝑌‘𝑏))) |
| 67 | 43, 44, 66 | syl2anc 411 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ((𝑋 + 𝑌)‘𝑏) = ((𝑋‘𝑏)(+g‘𝑅)(𝑌‘𝑏))) |
| 68 | 32 | ad3antrrr 492 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → 𝑝:𝐼⟶ℕ0) |
| 69 | | simpr 110 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → 𝑒 ∈ 𝐼) |
| 70 | 68, 69 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) ∈
ℕ0) |
| 71 | 70 | nn0red 9322 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) ∈ ℝ) |
| 72 | 27 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑝 ∈ (ℕ0
↑𝑚 𝐼)) |
| 73 | 30 | biimpa 296 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑝:𝐼⟶ℕ0) |
| 74 | 73 | ffnd 5411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑝 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑝 Fn 𝐼) |
| 75 | 43, 72, 74 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑝 Fn 𝐼) |
| 76 | 33 | ad2antrr 488 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑞 ∈ (ℕ0
↑𝑚 𝐼)) |
| 77 | 34 | biimpa 296 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑞 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑞:𝐼⟶ℕ0) |
| 78 | 77 | ffnd 5411 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑞 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑞 Fn 𝐼) |
| 79 | 43, 76, 78 | syl2anc 411 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑞 Fn 𝐼) |
| 80 | 37 | ad2antrr 488 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝐼 ∈ Fin) |
| 81 | | eqidd 2197 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) = (𝑝‘𝑒)) |
| 82 | | eqidd 2197 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) = (𝑞‘𝑒)) |
| 83 | 36 | ad3antrrr 492 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → 𝑞:𝐼⟶ℕ0) |
| 84 | 83, 69 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) ∈
ℕ0) |
| 85 | 70, 84 | nn0addcld 9325 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ((𝑝‘𝑒) + (𝑞‘𝑒)) ∈
ℕ0) |
| 86 | 75, 79, 80, 80, 38, 81, 82, 85 | ofvalg 6149 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ((𝑝 ∘𝑓 + 𝑞)‘𝑒) = ((𝑝‘𝑒) + (𝑞‘𝑒))) |
| 87 | 86, 85 | eqeltrd 2273 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ((𝑝 ∘𝑓 + 𝑞)‘𝑒) ∈
ℕ0) |
| 88 | 87 | nn0red 9322 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ((𝑝 ∘𝑓 + 𝑞)‘𝑒) ∈ ℝ) |
| 89 | | elmapi 6738 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑏 ∈ (ℕ0
↑𝑚 𝐼) → 𝑏:𝐼⟶ℕ0) |
| 90 | 89 | adantl 277 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → 𝑏:𝐼⟶ℕ0) |
| 91 | 90 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → 𝑏:𝐼⟶ℕ0) |
| 92 | 91, 69 | ffvelcdmd 5701 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑏‘𝑒) ∈
ℕ0) |
| 93 | 92 | nn0red 9322 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑏‘𝑒) ∈ ℝ) |
| 94 | | nn0addge1 9314 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑝‘𝑒) ∈ ℝ ∧ (𝑞‘𝑒) ∈ ℕ0) → (𝑝‘𝑒) ≤ ((𝑝‘𝑒) + (𝑞‘𝑒))) |
| 95 | 71, 84, 94 | syl2anc 411 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) ≤ ((𝑝‘𝑒) + (𝑞‘𝑒))) |
| 96 | 95, 86 | breqtrrd 4062 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) ≤ ((𝑝 ∘𝑓 + 𝑞)‘𝑒)) |
| 97 | | fveq2 5561 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑒 → ((𝑝 ∘𝑓 + 𝑞)‘𝑘) = ((𝑝 ∘𝑓 + 𝑞)‘𝑒)) |
| 98 | | fveq2 5561 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑒 → (𝑏‘𝑘) = (𝑏‘𝑒)) |
| 99 | 97, 98 | breq12d 4047 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑒 → (((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘) ↔ ((𝑝 ∘𝑓 + 𝑞)‘𝑒) < (𝑏‘𝑒))) |
| 100 | | simplr 528 |
. . . . . . . . . . . . . . 15
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) |
| 101 | 99, 100, 69 | rspcdva 2873 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → ((𝑝 ∘𝑓 + 𝑞)‘𝑒) < (𝑏‘𝑒)) |
| 102 | 71, 88, 93, 96, 101 | lelttrd 8170 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑝‘𝑒) < (𝑏‘𝑒)) |
| 103 | 102 | ralrimiva 2570 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑒 ∈ 𝐼 (𝑝‘𝑒) < (𝑏‘𝑒)) |
| 104 | | fveq2 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑒 → (𝑝‘𝑣) = (𝑝‘𝑒)) |
| 105 | | fveq2 5561 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = 𝑒 → (𝑏‘𝑣) = (𝑏‘𝑒)) |
| 106 | 104, 105 | breq12d 4047 |
. . . . . . . . . . . . 13
⊢ (𝑣 = 𝑒 → ((𝑝‘𝑣) < (𝑏‘𝑣) ↔ (𝑝‘𝑒) < (𝑏‘𝑒))) |
| 107 | 106 | cbvralv 2729 |
. . . . . . . . . . . 12
⊢
(∀𝑣 ∈
𝐼 (𝑝‘𝑣) < (𝑏‘𝑣) ↔ ∀𝑒 ∈ 𝐼 (𝑝‘𝑒) < (𝑏‘𝑒)) |
| 108 | 103, 107 | sylibr 134 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑏‘𝑣)) |
| 109 | | fveq1 5560 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑏 → (𝑢‘𝑣) = (𝑏‘𝑣)) |
| 110 | 109 | breq2d 4046 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑏 → ((𝑝‘𝑣) < (𝑢‘𝑣) ↔ (𝑝‘𝑣) < (𝑏‘𝑣))) |
| 111 | 110 | ralbidv 2497 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑏 → (∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) ↔ ∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑏‘𝑣))) |
| 112 | | fveqeq2 5570 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑏 → ((𝑋‘𝑢) = (0g‘𝑅) ↔ (𝑋‘𝑏) = (0g‘𝑅))) |
| 113 | 111, 112 | imbi12d 234 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑏 → ((∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)) ↔ (∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑏‘𝑣) → (𝑋‘𝑏) = (0g‘𝑅)))) |
| 114 | | simprr 531 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) → ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅))) |
| 115 | 114 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅))) |
| 116 | 113, 115,
44 | rspcdva 2873 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → (∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑏‘𝑣) → (𝑋‘𝑏) = (0g‘𝑅))) |
| 117 | 108, 116 | mpd 13 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → (𝑋‘𝑏) = (0g‘𝑅)) |
| 118 | 117 | oveq1d 5940 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ((𝑋‘𝑏)(+g‘𝑅)(𝑌‘𝑏)) = ((0g‘𝑅)(+g‘𝑅)(𝑌‘𝑏))) |
| 119 | 67, 118 | eqtrd 2229 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ((𝑋 + 𝑌)‘𝑏) = ((0g‘𝑅)(+g‘𝑅)(𝑌‘𝑏))) |
| 120 | 43, 4 | syl 14 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → 𝑅 ∈ Grp) |
| 121 | 43, 44, 63 | syl2anc 411 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → (𝑌‘𝑏) ∈ (Base‘𝑅)) |
| 122 | 49, 45, 15, 120, 121 | grplidd 13237 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ((0g‘𝑅)(+g‘𝑅)(𝑌‘𝑏)) = (𝑌‘𝑏)) |
| 123 | 84 | nn0red 9322 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) ∈ ℝ) |
| 124 | | nn0addge2 9315 |
. . . . . . . . . . . . . 14
⊢ (((𝑞‘𝑒) ∈ ℝ ∧ (𝑝‘𝑒) ∈ ℕ0) → (𝑞‘𝑒) ≤ ((𝑝‘𝑒) + (𝑞‘𝑒))) |
| 125 | 123, 70, 124 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) ≤ ((𝑝‘𝑒) + (𝑞‘𝑒))) |
| 126 | 125, 86 | breqtrrd 4062 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) ≤ ((𝑝 ∘𝑓 + 𝑞)‘𝑒)) |
| 127 | 123, 88, 93, 126, 101 | lelttrd 8170 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) ∧ 𝑒 ∈ 𝐼) → (𝑞‘𝑒) < (𝑏‘𝑒)) |
| 128 | 127 | ralrimiva 2570 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑒 ∈ 𝐼 (𝑞‘𝑒) < (𝑏‘𝑒)) |
| 129 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑒 → (𝑞‘𝑡) = (𝑞‘𝑒)) |
| 130 | | fveq2 5561 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑒 → (𝑏‘𝑡) = (𝑏‘𝑒)) |
| 131 | 129, 130 | breq12d 4047 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑒 → ((𝑞‘𝑡) < (𝑏‘𝑡) ↔ (𝑞‘𝑒) < (𝑏‘𝑒))) |
| 132 | 131 | cbvralv 2729 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝐼 (𝑞‘𝑡) < (𝑏‘𝑡) ↔ ∀𝑒 ∈ 𝐼 (𝑞‘𝑒) < (𝑏‘𝑒)) |
| 133 | 128, 132 | sylibr 134 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑏‘𝑡)) |
| 134 | | fveq1 5560 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑏 → (𝑠‘𝑡) = (𝑏‘𝑡)) |
| 135 | 134 | breq2d 4046 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑏 → ((𝑞‘𝑡) < (𝑠‘𝑡) ↔ (𝑞‘𝑡) < (𝑏‘𝑡))) |
| 136 | 135 | ralbidv 2497 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑏 → (∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) ↔ ∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑏‘𝑡))) |
| 137 | | fveqeq2 5570 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑏 → ((𝑌‘𝑠) = (0g‘𝑅) ↔ (𝑌‘𝑏) = (0g‘𝑅))) |
| 138 | 136, 137 | imbi12d 234 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑏 → ((∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)) ↔ (∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑏‘𝑡) → (𝑌‘𝑏) = (0g‘𝑅)))) |
| 139 | | simprr 531 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))) |
| 140 | 139 | ad2antrr 488 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅))) |
| 141 | 138, 140,
44 | rspcdva 2873 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → (∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑏‘𝑡) → (𝑌‘𝑏) = (0g‘𝑅))) |
| 142 | 133, 141 | mpd 13 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → (𝑌‘𝑏) = (0g‘𝑅)) |
| 143 | 119, 122,
142 | 3eqtrd 2233 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) ∧ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘)) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅)) |
| 144 | 143 | ex 115 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) ∧ 𝑏 ∈ (ℕ0
↑𝑚 𝐼)) → (∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 145 | 144 | ralrimiva 2570 |
. . . . 5
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 146 | | fveq1 5560 |
. . . . . . . 8
⊢ (𝑎 = (𝑝 ∘𝑓 + 𝑞) → (𝑎‘𝑘) = ((𝑝 ∘𝑓 + 𝑞)‘𝑘)) |
| 147 | 146 | breq1d 4044 |
. . . . . . 7
⊢ (𝑎 = (𝑝 ∘𝑓 + 𝑞) → ((𝑎‘𝑘) < (𝑏‘𝑘) ↔ ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘))) |
| 148 | 147 | ralbidv 2497 |
. . . . . 6
⊢ (𝑎 = (𝑝 ∘𝑓 + 𝑞) → (∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘))) |
| 149 | 148 | rspceaimv 2876 |
. . . . 5
⊢ (((𝑝 ∘𝑓 +
𝑞) ∈
(ℕ0 ↑𝑚 𝐼) ∧ ∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 ((𝑝 ∘𝑓 + 𝑞)‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 150 | 42, 145, 149 | syl2anc 411 |
. . . 4
⊢ (((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) ∧ (𝑞 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑠 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑡 ∈ 𝐼 (𝑞‘𝑡) < (𝑠‘𝑡) → (𝑌‘𝑠) = (0g‘𝑅)))) → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 151 | 24, 150 | rexlimddv 2619 |
. . 3
⊢ ((𝜑 ∧ (𝑝 ∈ (ℕ0
↑𝑚 𝐼) ∧ ∀𝑢 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑣 ∈ 𝐼 (𝑝‘𝑣) < (𝑢‘𝑣) → (𝑋‘𝑢) = (0g‘𝑅)))) → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 152 | 19, 151 | rexlimddv 2619 |
. 2
⊢ (𝜑 → ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))) |
| 153 | 6, 1, 2, 15, 7 | mplelbascoe 14326 |
. . 3
⊢ ((𝐼 ∈ Fin ∧ 𝑅 ∈ Grp) → ((𝑋 + 𝑌) ∈ 𝑈 ↔ ((𝑋 + 𝑌) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))))) |
| 154 | 14, 4, 153 | syl2anc 411 |
. 2
⊢ (𝜑 → ((𝑋 + 𝑌) ∈ 𝑈 ↔ ((𝑋 + 𝑌) ∈ (Base‘𝑆) ∧ ∃𝑎 ∈ (ℕ0
↑𝑚 𝐼)∀𝑏 ∈ (ℕ0
↑𝑚 𝐼)(∀𝑘 ∈ 𝐼 (𝑎‘𝑘) < (𝑏‘𝑘) → ((𝑋 + 𝑌)‘𝑏) = (0g‘𝑅))))) |
| 155 | 13, 152, 154 | mpbir2and 946 |
1
⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) |