![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasaddf | GIF version |
Description: The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
imasaddf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasaddf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasaddf.p | ⊢ · = (+g‘𝑅) |
imasaddf.a | ⊢ ∙ = (+g‘𝑈) |
imasaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
Ref | Expression |
---|---|
imasaddf | ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
2 | imasaddf.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
3 | imasaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
4 | imasaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
5 | imasaddf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
6 | imasaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
7 | imasaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
8 | 3, 4, 1, 5, 6, 7 | imasplusg 12747 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
9 | basfn 12534 | . . . 4 ⊢ Base Fn V | |
10 | 5 | elexd 2762 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
11 | funfvex 5544 | . . . . 5 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
12 | 11 | funfni 5328 | . . . 4 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
13 | 9, 10, 12 | sylancr 414 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
14 | 4, 13 | eqeltrd 2264 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
15 | plusgslid 12586 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
16 | 15 | slotex 12503 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
17 | 5, 16 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
18 | 6, 17 | eqeltrid 2274 | . 2 ⊢ (𝜑 → · ∈ V) |
19 | imasaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
20 | 1, 2, 8, 14, 18, 19 | imasaddflemg 12755 | 1 ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 Vcvv 2749 × cxp 4636 Fn wfn 5223 ⟶wf 5224 –onto→wfo 5226 ‘cfv 5228 (class class class)co 5888 Basecbs 12476 +gcplusg 12551 “s cimas 12738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-pre-ltirr 7937 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-tp 3612 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8008 df-mnf 8009 df-ltxr 8011 df-inn 8934 df-2 8992 df-3 8993 df-ndx 12479 df-slot 12480 df-base 12482 df-plusg 12564 df-mulr 12565 df-iimas 12741 |
This theorem is referenced by: imasgrp2 13005 |
Copyright terms: Public domain | W3C validator |