![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasaddf | GIF version |
Description: The image structure's group operation is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
imasaddf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasaddf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasaddf.p | ⊢ · = (+g‘𝑅) |
imasaddf.a | ⊢ ∙ = (+g‘𝑈) |
imasaddf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) |
Ref | Expression |
---|---|
imasaddf | ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
2 | imasaddf.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
3 | imasaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
4 | imasaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
5 | imasaddf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
6 | imasaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
7 | imasaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
8 | 3, 4, 1, 5, 6, 7 | imasplusg 12891 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
9 | basfn 12676 | . . . 4 ⊢ Base Fn V | |
10 | 5 | elexd 2773 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
11 | funfvex 5571 | . . . . 5 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
12 | 11 | funfni 5354 | . . . 4 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
13 | 9, 10, 12 | sylancr 414 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
14 | 4, 13 | eqeltrd 2270 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
15 | plusgslid 12730 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
16 | 15 | slotex 12645 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
17 | 5, 16 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
18 | 6, 17 | eqeltrid 2280 | . 2 ⊢ (𝜑 → · ∈ V) |
19 | imasaddf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
20 | 1, 2, 8, 14, 18, 19 | imasaddflemg 12899 | 1 ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 Vcvv 2760 × cxp 4657 Fn wfn 5249 ⟶wf 5250 –onto→wfo 5252 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 “s cimas 12882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-tp 3626 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-plusg 12708 df-mulr 12709 df-iimas 12885 |
This theorem is referenced by: imasgrp2 13180 |
Copyright terms: Public domain | W3C validator |