| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imasmulf | GIF version | ||
| Description: The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | 
| imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | 
| imasaddf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | 
| imasaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | 
| imasaddf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) | 
| imasmulf.p | ⊢ · = (.r‘𝑅) | 
| imasmulf.a | ⊢ ∙ = (.r‘𝑈) | 
| imasmulf.c | ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| imasmulf | ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imasaddf.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 2 | imasaddf.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 3 | imasaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 4 | imasaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 5 | imasaddf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 6 | imasmulf.p | . . 3 ⊢ · = (.r‘𝑅) | |
| 7 | imasmulf.a | . . 3 ⊢ ∙ = (.r‘𝑈) | |
| 8 | 3, 4, 1, 5, 6, 7 | imasmulr 12952 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) | 
| 9 | basfn 12736 | . . . 4 ⊢ Base Fn V | |
| 10 | 5 | elexd 2776 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) | 
| 11 | funfvex 5575 | . . . . 5 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 12 | 11 | funfni 5358 | . . . 4 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) | 
| 13 | 9, 10, 12 | sylancr 414 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 14 | 4, 13 | eqeltrd 2273 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) | 
| 15 | mulrslid 12809 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 16 | 15 | slotex 12705 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (.r‘𝑅) ∈ V) | 
| 17 | 5, 16 | syl 14 | . . 3 ⊢ (𝜑 → (.r‘𝑅) ∈ V) | 
| 18 | 6, 17 | eqeltrid 2283 | . 2 ⊢ (𝜑 → · ∈ V) | 
| 19 | imasmulf.c | . 2 ⊢ ((𝜑 ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (𝑝 · 𝑞) ∈ 𝑉) | |
| 20 | 1, 2, 8, 14, 18, 19 | imasaddflemg 12959 | 1 ⊢ (𝜑 → ∙ :(𝐵 × 𝐵)⟶𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 Vcvv 2763 × cxp 4661 Fn wfn 5253 ⟶wf 5254 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 .rcmulr 12756 “s cimas 12942 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-tp 3630 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-mulr 12769 df-iimas 12945 | 
| This theorem is referenced by: imasrng 13512 imasring 13620 | 
| Copyright terms: Public domain | W3C validator |