ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imasmulf GIF version

Theorem imasmulf 13198
Description: The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.)
Hypotheses
Ref Expression
imasaddf.f (𝜑𝐹:𝑉onto𝐵)
imasaddf.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasaddf.u (𝜑𝑈 = (𝐹s 𝑅))
imasaddf.v (𝜑𝑉 = (Base‘𝑅))
imasaddf.r (𝜑𝑅𝑍)
imasmulf.p · = (.r𝑅)
imasmulf.a = (.r𝑈)
imasmulf.c ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
Assertion
Ref Expression
imasmulf (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Distinct variable groups:   𝑞,𝑝,𝐵   𝑅,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑉   · ,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝑈(𝑞,𝑝,𝑎,𝑏)   𝑍(𝑞,𝑝,𝑎,𝑏)

Proof of Theorem imasmulf
StepHypRef Expression
1 imasaddf.f . 2 (𝜑𝐹:𝑉onto𝐵)
2 imasaddf.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
3 imasaddf.u . . 3 (𝜑𝑈 = (𝐹s 𝑅))
4 imasaddf.v . . 3 (𝜑𝑉 = (Base‘𝑅))
5 imasaddf.r . . 3 (𝜑𝑅𝑍)
6 imasmulf.p . . 3 · = (.r𝑅)
7 imasmulf.a . . 3 = (.r𝑈)
83, 4, 1, 5, 6, 7imasmulr 13185 . 2 (𝜑 = 𝑝𝑉 𝑞𝑉 {⟨⟨(𝐹𝑝), (𝐹𝑞)⟩, (𝐹‘(𝑝 · 𝑞))⟩})
9 basfn 12934 . . . 4 Base Fn V
105elexd 2786 . . . 4 (𝜑𝑅 ∈ V)
11 funfvex 5600 . . . . 5 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1211funfni 5381 . . . 4 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
139, 10, 12sylancr 414 . . 3 (𝜑 → (Base‘𝑅) ∈ V)
144, 13eqeltrd 2283 . 2 (𝜑𝑉 ∈ V)
15 mulrslid 13008 . . . . 5 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
1615slotex 12903 . . . 4 (𝑅𝑍 → (.r𝑅) ∈ V)
175, 16syl 14 . . 3 (𝜑 → (.r𝑅) ∈ V)
186, 17eqeltrid 2293 . 2 (𝜑· ∈ V)
19 imasmulf.c . 2 ((𝜑 ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 · 𝑞) ∈ 𝑉)
201, 2, 8, 14, 18, 19imasaddflemg 13192 1 (𝜑 :(𝐵 × 𝐵)⟶𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  Vcvv 2773   × cxp 4677   Fn wfn 5271  wf 5272  ontowfo 5274  cfv 5276  (class class class)co 5951  Basecbs 12876  .rcmulr 12954  s cimas 13175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-plusg 12966  df-mulr 12967  df-iimas 13178
This theorem is referenced by:  imasrng  13762  imasring  13870
  Copyright terms: Public domain W3C validator