![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imasmulf | GIF version |
Description: The image structure's ring multiplication is closed in the base set. (Contributed by Mario Carneiro, 23-Feb-2015.) |
Ref | Expression |
---|---|
imasaddf.f | β’ (π β πΉ:πβontoβπ΅) |
imasaddf.e | β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (πΉβ(π Β· π)))) |
imasaddf.u | β’ (π β π = (πΉ βs π )) |
imasaddf.v | β’ (π β π = (Baseβπ )) |
imasaddf.r | β’ (π β π β π) |
imasmulf.p | β’ Β· = (.rβπ ) |
imasmulf.a | β’ β = (.rβπ) |
imasmulf.c | β’ ((π β§ (π β π β§ π β π)) β (π Β· π) β π) |
Ref | Expression |
---|---|
imasmulf | β’ (π β β :(π΅ Γ π΅)βΆπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasaddf.f | . 2 β’ (π β πΉ:πβontoβπ΅) | |
2 | imasaddf.e | . 2 β’ ((π β§ (π β π β§ π β π) β§ (π β π β§ π β π)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π Β· π)) = (πΉβ(π Β· π)))) | |
3 | imasaddf.u | . . 3 β’ (π β π = (πΉ βs π )) | |
4 | imasaddf.v | . . 3 β’ (π β π = (Baseβπ )) | |
5 | imasaddf.r | . . 3 β’ (π β π β π) | |
6 | imasmulf.p | . . 3 β’ Β· = (.rβπ ) | |
7 | imasmulf.a | . . 3 β’ β = (.rβπ) | |
8 | 3, 4, 1, 5, 6, 7 | imasmulr 12735 | . 2 β’ (π β β = βͺ π β π βͺ π β π {β¨β¨(πΉβπ), (πΉβπ)β©, (πΉβ(π Β· π))β©}) |
9 | basfn 12522 | . . . 4 β’ Base Fn V | |
10 | 5 | elexd 2752 | . . . 4 β’ (π β π β V) |
11 | funfvex 5534 | . . . . 5 β’ ((Fun Base β§ π β dom Base) β (Baseβπ ) β V) | |
12 | 11 | funfni 5318 | . . . 4 β’ ((Base Fn V β§ π β V) β (Baseβπ ) β V) |
13 | 9, 10, 12 | sylancr 414 | . . 3 β’ (π β (Baseβπ ) β V) |
14 | 4, 13 | eqeltrd 2254 | . 2 β’ (π β π β V) |
15 | mulrslid 12592 | . . . . 5 β’ (.r = Slot (.rβndx) β§ (.rβndx) β β) | |
16 | 15 | slotex 12491 | . . . 4 β’ (π β π β (.rβπ ) β V) |
17 | 5, 16 | syl 14 | . . 3 β’ (π β (.rβπ ) β V) |
18 | 6, 17 | eqeltrid 2264 | . 2 β’ (π β Β· β V) |
19 | imasmulf.c | . 2 β’ ((π β§ (π β π β§ π β π)) β (π Β· π) β π) | |
20 | 1, 2, 8, 14, 18, 19 | imasaddflemg 12742 | 1 β’ (π β β :(π΅ Γ π΅)βΆπ΅) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 β§ w3a 978 = wceq 1353 β wcel 2148 Vcvv 2739 Γ cxp 4626 Fn wfn 5213 βΆwf 5214 βontoβwfo 5216 βcfv 5218 (class class class)co 5877 Basecbs 12464 .rcmulr 12539 βs cimas 12725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-tp 3602 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-ndx 12467 df-slot 12468 df-base 12470 df-plusg 12551 df-mulr 12552 df-iimas 12728 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |