| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddfn | GIF version | ||
| Description: The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasaddf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasaddf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasaddf.p | ⊢ · = (+g‘𝑅) |
| imasaddf.a | ⊢ ∙ = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| imasaddfn | ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 2 | imasaddf.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 3 | imasaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 4 | imasaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 5 | imasaddf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 6 | imasaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
| 7 | imasaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
| 8 | 3, 4, 1, 5, 6, 7 | imasplusg 13140 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| 9 | basfn 12890 | . . . 4 ⊢ Base Fn V | |
| 10 | 5 | elexd 2785 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 11 | funfvex 5593 | . . . . 5 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 12 | 11 | funfni 5376 | . . . 4 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 13 | 9, 10, 12 | sylancr 414 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 14 | 4, 13 | eqeltrd 2282 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 15 | plusgslid 12944 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 16 | 15 | slotex 12859 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 17 | 5, 16 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 18 | 6, 17 | eqeltrid 2292 | . 2 ⊢ (𝜑 → · ∈ V) |
| 19 | 1, 2, 8, 14, 18 | imasaddfnlemg 13146 | 1 ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2176 Vcvv 2772 × cxp 4673 Fn wfn 5266 –onto→wfo 5269 ‘cfv 5271 (class class class)co 5944 Basecbs 12832 +gcplusg 12909 “s cimas 13131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-tp 3641 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-3 9096 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-mulr 12923 df-iimas 13134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |