| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imasaddfn | GIF version | ||
| Description: The image structure's group operation is a function. (Contributed by Mario Carneiro, 23-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| Ref | Expression |
|---|---|
| imasaddf.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
| imasaddf.e | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasaddf.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
| imasaddf.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
| imasaddf.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
| imasaddf.p | ⊢ · = (+g‘𝑅) |
| imasaddf.a | ⊢ ∙ = (+g‘𝑈) |
| Ref | Expression |
|---|---|
| imasaddfn | ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasaddf.f | . 2 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
| 2 | imasaddf.e | . 2 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 3 | imasaddf.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
| 4 | imasaddf.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
| 5 | imasaddf.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
| 6 | imasaddf.p | . . 3 ⊢ · = (+g‘𝑅) | |
| 7 | imasaddf.a | . . 3 ⊢ ∙ = (+g‘𝑈) | |
| 8 | 3, 4, 1, 5, 6, 7 | imasplusg 13336 | . 2 ⊢ (𝜑 → ∙ = ∪ 𝑝 ∈ 𝑉 ∪ 𝑞 ∈ 𝑉 {〈〈(𝐹‘𝑝), (𝐹‘𝑞)〉, (𝐹‘(𝑝 · 𝑞))〉}) |
| 9 | basfn 13086 | . . . 4 ⊢ Base Fn V | |
| 10 | 5 | elexd 2813 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ V) |
| 11 | funfvex 5643 | . . . . 5 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 12 | 11 | funfni 5422 | . . . 4 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 13 | 9, 10, 12 | sylancr 414 | . . 3 ⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 14 | 4, 13 | eqeltrd 2306 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 15 | plusgslid 13140 | . . . . 5 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 16 | 15 | slotex 13054 | . . . 4 ⊢ (𝑅 ∈ 𝑍 → (+g‘𝑅) ∈ V) |
| 17 | 5, 16 | syl 14 | . . 3 ⊢ (𝜑 → (+g‘𝑅) ∈ V) |
| 18 | 6, 17 | eqeltrid 2316 | . 2 ⊢ (𝜑 → · ∈ V) |
| 19 | 1, 2, 8, 14, 18 | imasaddfnlemg 13342 | 1 ⊢ (𝜑 → ∙ Fn (𝐵 × 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 Vcvv 2799 × cxp 4716 Fn wfn 5312 –onto→wfo 5315 ‘cfv 5317 (class class class)co 6000 Basecbs 13027 +gcplusg 13105 “s cimas 13327 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-plusg 13118 df-mulr 13119 df-iimas 13330 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |