| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cnfldplusf | GIF version | ||
| Description: The functionalized addition operation of the field of complex numbers. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| cnfldplusf | ⊢ + = (+𝑓‘ℂfld) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldex 14396 | . . 3 ⊢ ℂfld ∈ V | |
| 2 | ax-addf 8067 | . . . 4 ⊢ + :(ℂ × ℂ)⟶ℂ | |
| 3 | ffn 5435 | . . . 4 ⊢ ( + :(ℂ × ℂ)⟶ℂ → + Fn (ℂ × ℂ)) | |
| 4 | 2, 3 | ax-mp 5 | . . 3 ⊢ + Fn (ℂ × ℂ) |
| 5 | cnfldbas 14397 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 6 | cnfldadd 14399 | . . . 4 ⊢ + = (+g‘ℂfld) | |
| 7 | eqid 2206 | . . . 4 ⊢ (+𝑓‘ℂfld) = (+𝑓‘ℂfld) | |
| 8 | 5, 6, 7 | plusfeqg 13271 | . . 3 ⊢ ((ℂfld ∈ V ∧ + Fn (ℂ × ℂ)) → (+𝑓‘ℂfld) = + ) |
| 9 | 1, 4, 8 | mp2an 426 | . 2 ⊢ (+𝑓‘ℂfld) = + |
| 10 | 9 | eqcomi 2210 | 1 ⊢ + = (+𝑓‘ℂfld) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 Vcvv 2773 × cxp 4681 Fn wfn 5275 ⟶wf 5276 ‘cfv 5280 ℂcc 7943 + caddc 7948 +𝑓cplusf 13260 ℂfldccnfld 14393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-addf 8067 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-9 9122 df-n0 9316 df-z 9393 df-dec 9525 df-uz 9669 df-rp 9796 df-fz 10151 df-cj 11228 df-abs 11385 df-struct 12909 df-ndx 12910 df-slot 12911 df-base 12913 df-plusg 12997 df-mulr 12998 df-starv 12999 df-tset 13003 df-ple 13004 df-ds 13006 df-unif 13007 df-topgen 13167 df-plusf 13262 df-bl 14383 df-mopn 14384 df-fg 14386 df-metu 14387 df-cnfld 14394 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |