![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zringsubgval | GIF version |
Description: Subtraction in the ring of integers. (Contributed by AV, 3-Aug-2019.) |
Ref | Expression |
---|---|
zringsubgval.m | ⊢ − = (-g‘ℤring) |
Ref | Expression |
---|---|
zringsubgval | ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubrg 13852 | . . 3 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
2 | subrgsubg 13542 | . . 3 ⊢ (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ℤ ∈ (SubGrp‘ℂfld) |
4 | cnfldsub 13846 | . . 3 ⊢ − = (-g‘ℂfld) | |
5 | df-zring 13858 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
6 | zringsubgval.m | . . 3 ⊢ − = (-g‘ℤring) | |
7 | 4, 5, 6 | subgsub 13098 | . 2 ⊢ ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) |
8 | 3, 7 | mp3an1 1335 | 1 ⊢ ((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) → (𝑋 − 𝑌) = (𝑋 − 𝑌)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ‘cfv 5232 (class class class)co 5892 − cmin 8148 ℤcz 9273 -gcsg 12920 SubGrpcsubg 13079 SubRingcsubrg 13532 ℂfldccnfld 13832 ℤringczring 13857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-cnex 7922 ax-resscn 7923 ax-1cn 7924 ax-1re 7925 ax-icn 7926 ax-addcl 7927 ax-addrcl 7928 ax-mulcl 7929 ax-mulrcl 7930 ax-addcom 7931 ax-mulcom 7932 ax-addass 7933 ax-mulass 7934 ax-distr 7935 ax-i2m1 7936 ax-0lt1 7937 ax-1rid 7938 ax-0id 7939 ax-rnegex 7940 ax-precex 7941 ax-cnre 7942 ax-pre-ltirr 7943 ax-pre-ltwlin 7944 ax-pre-lttrn 7945 ax-pre-apti 7946 ax-pre-ltadd 7947 ax-pre-mulgt0 7948 ax-addf 7953 ax-mulf 7954 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-tp 3615 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-1st 6160 df-2nd 6161 df-pnf 8014 df-mnf 8015 df-xr 8016 df-ltxr 8017 df-le 8018 df-sub 8150 df-neg 8151 df-reap 8552 df-inn 8940 df-2 8998 df-3 8999 df-4 9000 df-5 9001 df-6 9002 df-7 9003 df-8 9004 df-9 9005 df-n0 9197 df-z 9274 df-dec 9405 df-uz 9549 df-fz 10029 df-cj 10871 df-struct 12489 df-ndx 12490 df-slot 12491 df-base 12493 df-sets 12494 df-iress 12495 df-plusg 12575 df-mulr 12576 df-starv 12577 df-0g 12736 df-mgm 12805 df-sgrp 12838 df-mnd 12851 df-grp 12921 df-minusg 12922 df-sbg 12923 df-subg 13082 df-cmn 13193 df-mgp 13243 df-ur 13282 df-ring 13320 df-cring 13321 df-subrg 13534 df-icnfld 13833 df-zring 13858 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |