| Step | Hyp | Ref
 | Expression | 
| 1 |   | eqcom 2198 | 
. 2
⊢ ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ (𝐿‘𝐵) = (𝐿‘𝐴)) | 
| 2 |   | eqid 2196 | 
. . . . . 6
⊢
(RSpan‘ℤring) =
(RSpan‘ℤring) | 
| 3 |   | eqid 2196 | 
. . . . . 6
⊢
(ℤring ~QG
((RSpan‘ℤring)‘{𝑁})) = (ℤring
~QG ((RSpan‘ℤring)‘{𝑁})) | 
| 4 |   | zncyg.y | 
. . . . . 6
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) | 
| 5 |   | zndvds.2 | 
. . . . . 6
⊢ 𝐿 = (ℤRHom‘𝑌) | 
| 6 | 2, 3, 4, 5 | znzrhval 14203 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈ ℤ)
→ (𝐿‘𝐵) = [𝐵](ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))) | 
| 7 | 6 | 3adant2 1018 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐿‘𝐵) = [𝐵](ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))) | 
| 8 | 2, 3, 4, 5 | znzrhval 14203 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐿‘𝐴) = [𝐴](ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))) | 
| 9 | 8 | 3adant3 1019 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐿‘𝐴) = [𝐴](ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))) | 
| 10 | 7, 9 | eqeq12d 2211 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐿‘𝐵) = (𝐿‘𝐴) ↔ [𝐵](ℤring
~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring
~QG ((RSpan‘ℤring)‘{𝑁})))) | 
| 11 |   | zringring 14149 | 
. . . . . 6
⊢
ℤring ∈ Ring | 
| 12 |   | nn0z 9346 | 
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) | 
| 13 | 12 | 3ad2ant1 1020 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ 𝑁 ∈
ℤ) | 
| 14 | 13 | snssd 3767 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ {𝑁} ⊆
ℤ) | 
| 15 |   | zringbas 14152 | 
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) | 
| 16 |   | eqid 2196 | 
. . . . . . . 8
⊢
(LIdeal‘ℤring) =
(LIdeal‘ℤring) | 
| 17 | 2, 15, 16 | rspcl 14047 | 
. . . . . . 7
⊢
((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) →
((RSpan‘ℤring)‘{𝑁}) ∈
(LIdeal‘ℤring)) | 
| 18 | 11, 14, 17 | sylancr 414 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((RSpan‘ℤring)‘{𝑁}) ∈
(LIdeal‘ℤring)) | 
| 19 | 16 | lidlsubg 14042 | 
. . . . . 6
⊢
((ℤring ∈ Ring ∧
((RSpan‘ℤring)‘{𝑁}) ∈
(LIdeal‘ℤring)) →
((RSpan‘ℤring)‘{𝑁}) ∈
(SubGrp‘ℤring)) | 
| 20 | 11, 18, 19 | sylancr 414 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((RSpan‘ℤring)‘{𝑁}) ∈
(SubGrp‘ℤring)) | 
| 21 | 15, 3 | eqger 13354 | 
. . . . 5
⊢
(((RSpan‘ℤring)‘{𝑁}) ∈
(SubGrp‘ℤring) → (ℤring
~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ) | 
| 22 | 20, 21 | syl 14 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (ℤring ~QG
((RSpan‘ℤring)‘{𝑁})) Er ℤ) | 
| 23 |   | simp3 1001 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ 𝐵 ∈
ℤ) | 
| 24 | 22, 23 | erth 6638 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐵(ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring
~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring
~QG ((RSpan‘ℤring)‘{𝑁})))) | 
| 25 |   | zringabl 14150 | 
. . . . 5
⊢
ℤring ∈ Abel | 
| 26 | 15, 16 | lidlss 14032 | 
. . . . . 6
⊢
(((RSpan‘ℤring)‘{𝑁}) ∈
(LIdeal‘ℤring) →
((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) | 
| 27 | 18, 26 | syl 14 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) | 
| 28 |   | eqid 2196 | 
. . . . . 6
⊢
(-g‘ℤring) =
(-g‘ℤring) | 
| 29 | 15, 28, 3 | eqgabl 13460 | 
. . . . 5
⊢
((ℤring ∈ Abel ∧
((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁})))) | 
| 30 | 25, 27, 29 | sylancr 414 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐵(ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁})))) | 
| 31 |   | simp2 1000 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ 𝐴 ∈
ℤ) | 
| 32 | 23, 31 | jca 306 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐵 ∈ ℤ
∧ 𝐴 ∈
ℤ)) | 
| 33 | 32 | biantrurd 305 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁})))) | 
| 34 |   | df-3an 982 | 
. . . . 5
⊢ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁}))) | 
| 35 | 33, 34 | bitr4di 198 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁})))) | 
| 36 |   | zsubrg 14137 | 
. . . . . . . . 9
⊢ ℤ
∈ (SubRing‘ℂfld) | 
| 37 |   | subrgsubg 13783 | 
. . . . . . . . 9
⊢ (ℤ
∈ (SubRing‘ℂfld) → ℤ ∈
(SubGrp‘ℂfld)) | 
| 38 | 36, 37 | mp1i 10 | 
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ℤ ∈ (SubGrp‘ℂfld)) | 
| 39 |   | cnfldsub 14131 | 
. . . . . . . . 9
⊢  −
= (-g‘ℂfld) | 
| 40 |   | df-zring 14147 | 
. . . . . . . . 9
⊢
ℤring = (ℂfld ↾s
ℤ) | 
| 41 | 39, 40, 28 | subgsub 13316 | 
. . . . . . . 8
⊢ ((ℤ
∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴 − 𝐵) = (𝐴(-g‘ℤring)𝐵)) | 
| 42 | 38, 41 | syld3an1 1295 | 
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐴 − 𝐵) = (𝐴(-g‘ℤring)𝐵)) | 
| 43 | 42 | eqcomd 2202 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐴(-g‘ℤring)𝐵) = (𝐴 − 𝐵)) | 
| 44 |   | dvdsrzring 14159 | 
. . . . . . . 8
⊢  ∥
= (∥r‘ℤring) | 
| 45 | 15, 2, 44 | rspsn 14090 | 
. . . . . . 7
⊢
((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) →
((RSpan‘ℤring)‘{𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | 
| 46 | 11, 13, 45 | sylancr 414 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((RSpan‘ℤring)‘{𝑁}) = {𝑥 ∣ 𝑁 ∥ 𝑥}) | 
| 47 | 43, 46 | eleq12d 2267 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴 − 𝐵) ∈ {𝑥 ∣ 𝑁 ∥ 𝑥})) | 
| 48 | 31, 23 | zsubcld 9453 | 
. . . . . 6
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐴 − 𝐵) ∈
ℤ) | 
| 49 |   | breq2 4037 | 
. . . . . . 7
⊢ (𝑥 = (𝐴 − 𝐵) → (𝑁 ∥ 𝑥 ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 50 | 49 | elabg 2910 | 
. . . . . 6
⊢ ((𝐴 − 𝐵) ∈ ℤ → ((𝐴 − 𝐵) ∈ {𝑥 ∣ 𝑁 ∥ 𝑥} ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 51 | 48, 50 | syl 14 | 
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐴 − 𝐵) ∈ {𝑥 ∣ 𝑁 ∥ 𝑥} ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 52 | 47, 51 | bitrd 188 | 
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐴(-g‘ℤring)𝐵) ∈
((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 53 | 30, 35, 52 | 3bitr2d 216 | 
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ (𝐵(ℤring
~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 54 | 10, 24, 53 | 3bitr2d 216 | 
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐿‘𝐵) = (𝐿‘𝐴) ↔ 𝑁 ∥ (𝐴 − 𝐵))) | 
| 55 | 1, 54 | bitrid 192 | 
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ 𝐵 ∈ ℤ)
→ ((𝐿‘𝐴) = (𝐿‘𝐵) ↔ 𝑁 ∥ (𝐴 − 𝐵))) |