ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zndvds GIF version

Theorem zndvds 14281
Description: Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zndvds ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem zndvds
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2198 . 2 ((𝐿𝐴) = (𝐿𝐵) ↔ (𝐿𝐵) = (𝐿𝐴))
2 eqid 2196 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2196 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
4 zncyg.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
5 zndvds.2 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
62, 3, 4, 5znzrhval 14279 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
763adant2 1018 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
82, 3, 4, 5znzrhval 14279 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
983adant3 1019 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
107, 9eqeq12d 2211 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
11 zringring 14225 . . . . . 6 ring ∈ Ring
12 nn0z 9363 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13123ad2ant1 1020 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℤ)
1413snssd 3768 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑁} ⊆ ℤ)
15 zringbas 14228 . . . . . . . 8 ℤ = (Base‘ℤring)
16 eqid 2196 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
172, 15, 16rspcl 14123 . . . . . . 7 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1811, 14, 17sylancr 414 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1916lidlsubg 14118 . . . . . 6 ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring)) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2011, 18, 19sylancr 414 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2115, 3eqger 13430 . . . . 5 (((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
2220, 21syl 14 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
23 simp3 1001 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
2422, 23erth 6647 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
25 zringabl 14226 . . . . 5 ring ∈ Abel
2615, 16lidlss 14108 . . . . . 6 (((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
2718, 26syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
28 eqid 2196 . . . . . 6 (-g‘ℤring) = (-g‘ℤring)
2915, 28, 3eqgabl 13536 . . . . 5 ((ℤring ∈ Abel ∧ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
3025, 27, 29sylancr 414 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
31 simp2 1000 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
3223, 31jca 306 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
3332biantrurd 305 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
34 df-3an 982 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})))
3533, 34bitr4di 198 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
36 zsubrg 14213 . . . . . . . . 9 ℤ ∈ (SubRing‘ℂfld)
37 subrgsubg 13859 . . . . . . . . 9 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3836, 37mp1i 10 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ℤ ∈ (SubGrp‘ℂfld))
39 cnfldsub 14207 . . . . . . . . 9 − = (-g‘ℂfld)
40 df-zring 14223 . . . . . . . . 9 ring = (ℂflds ℤ)
4139, 40, 28subgsub 13392 . . . . . . . 8 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4238, 41syld3an1 1295 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4342eqcomd 2202 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(-g‘ℤring)𝐵) = (𝐴𝐵))
44 dvdsrzring 14235 . . . . . . . 8 ∥ = (∥r‘ℤring)
4515, 2, 44rspsn 14166 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4611, 13, 45sylancr 414 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4743, 46eleq12d 2267 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴𝐵) ∈ {𝑥𝑁𝑥}))
4831, 23zsubcld 9470 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) ∈ ℤ)
49 breq2 4038 . . . . . . 7 (𝑥 = (𝐴𝐵) → (𝑁𝑥𝑁 ∥ (𝐴𝐵)))
5049elabg 2910 . . . . . 6 ((𝐴𝐵) ∈ ℤ → ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵)))
5148, 50syl 14 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵)))
5247, 51bitrd 188 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴𝐵)))
5330, 35, 523bitr2d 216 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴𝑁 ∥ (𝐴𝐵)))
5410, 24, 533bitr2d 216 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ 𝑁 ∥ (𝐴𝐵)))
551, 54bitrid 192 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  {cab 2182  wss 3157  {csn 3623   class class class wbr 4034  cfv 5259  (class class class)co 5925   Er wer 6598  [cec 6599  cmin 8214  0cn0 9266  cz 9343  cdvds 11969  -gcsg 13204  SubGrpcsubg 13373   ~QG cqg 13375  Abelcabl 13491  Ringcrg 13628  SubRingcsubrg 13849  LIdealclidl 14099  RSpancrsp 14100  fldccnfld 14188  ringczring 14222  ℤRHomczrh 14243  ℤ/nczn 14245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-recs 6372  df-frec 6458  df-er 6601  df-ec 6603  df-qs 6607  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-cj 11024  df-abs 11181  df-dvds 11970  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-sca 12796  df-vsca 12797  df-ip 12798  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-0g 12960  df-topgen 12962  df-iimas 13004  df-qus 13005  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-sbg 13207  df-mulg 13326  df-subg 13376  df-nsg 13377  df-eqg 13378  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-ur 13592  df-srg 13596  df-ring 13630  df-cring 13631  df-oppr 13700  df-dvdsr 13721  df-rhm 13784  df-subrg 13851  df-lmod 13921  df-lssm 13985  df-lsp 14019  df-sra 14067  df-rgmod 14068  df-lidl 14101  df-rsp 14102  df-2idl 14132  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-zring 14223  df-zrh 14246  df-zn 14248
This theorem is referenced by:  zndvds0  14282  znf1o  14283  znunit  14291  lgseisenlem3  15397  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator