ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zsssubrg GIF version

Theorem zsssubrg 14084
Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
zsssubrg (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)

Proof of Theorem zsssubrg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ)
2 ax-1cn 7967 . . . . . 6 1 ∈ ℂ
3 cnfldmulg 14075 . . . . . 6 ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
41, 2, 3sylancl 413 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
5 zcn 9325 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
65adantl 277 . . . . . 6 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
76mulridd 8038 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥 · 1) = 𝑥)
84, 7eqtrd 2226 . . . 4 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = 𝑥)
9 subrgsubg 13726 . . . . . 6 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ∈ (SubGrp‘ℂfld))
109adantr 276 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑅 ∈ (SubGrp‘ℂfld))
11 cnfld1 14071 . . . . . . 7 1 = (1r‘ℂfld)
1211subrg1cl 13728 . . . . . 6 (𝑅 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑅)
1312adantr 276 . . . . 5 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 1 ∈ 𝑅)
14 eqid 2193 . . . . . 6 (.g‘ℂfld) = (.g‘ℂfld)
1514subgmulgcl 13260 . . . . 5 ((𝑅 ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅) → (𝑥(.g‘ℂfld)1) ∈ 𝑅)
1610, 1, 13, 15syl3anc 1249 . . . 4 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) ∈ 𝑅)
178, 16eqeltrrd 2271 . . 3 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥𝑅)
1817ex 115 . 2 (𝑅 ∈ (SubRing‘ℂfld) → (𝑥 ∈ ℤ → 𝑥𝑅))
1918ssrdv 3186 1 (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2164  wss 3154  cfv 5255  (class class class)co 5919  cc 7872  1c1 7875   · cmul 7879  cz 9320  .gcmg 13192  SubGrpcsubg 13240  SubRingcsubrg 13716  fldccnfld 14055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-addf 7996  ax-mulf 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-tp 3627  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-9 9050  df-n0 9244  df-z 9321  df-dec 9452  df-uz 9596  df-rp 9723  df-fz 10078  df-seqfrec 10522  df-cj 10989  df-abs 11146  df-struct 12623  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-starv 12713  df-tset 12717  df-ple 12718  df-ds 12720  df-unif 12721  df-0g 12872  df-topgen 12874  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-minusg 13079  df-mulg 13193  df-subg 13243  df-cmn 13359  df-mgp 13420  df-ur 13459  df-ring 13497  df-cring 13498  df-subrg 13718  df-bl 14045  df-mopn 14046  df-fg 14048  df-metu 14049  df-cnfld 14056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator