| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > zsssubrg | GIF version | ||
| Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| zsssubrg | ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
| 2 | ax-1cn 8100 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 3 | cnfldmulg 14548 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) | |
| 4 | 1, 2, 3 | sylancl 413 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) |
| 5 | zcn 9459 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 6 | 5 | adantl 277 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
| 7 | 6 | mulridd 8171 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥 · 1) = 𝑥) |
| 8 | 4, 7 | eqtrd 2262 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = 𝑥) |
| 9 | subrgsubg 14199 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ∈ (SubGrp‘ℂfld)) | |
| 10 | 9 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑅 ∈ (SubGrp‘ℂfld)) |
| 11 | cnfld1 14544 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
| 12 | 11 | subrg1cl 14201 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑅) |
| 13 | 12 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 1 ∈ 𝑅) |
| 14 | eqid 2229 | . . . . . 6 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 15 | 14 | subgmulgcl 13732 | . . . . 5 ⊢ ((𝑅 ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
| 16 | 10, 1, 13, 15 | syl3anc 1271 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
| 17 | 8, 16 | eqeltrrd 2307 | . . 3 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ 𝑅) |
| 18 | 17 | ex 115 | . 2 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → (𝑥 ∈ ℤ → 𝑥 ∈ 𝑅)) |
| 19 | 18 | ssrdv 3230 | 1 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5318 (class class class)co 6007 ℂcc 8005 1c1 8008 · cmul 8012 ℤcz 9454 .gcmg 13664 SubGrpcsubg 13712 SubRingcsubrg 14189 ℂfldccnfld 14528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-addf 8129 ax-mulf 8130 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-n0 9378 df-z 9455 df-dec 9587 df-uz 9731 df-rp 9858 df-fz 10213 df-seqfrec 10678 df-cj 11361 df-abs 11518 df-struct 13042 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-iress 13048 df-plusg 13131 df-mulr 13132 df-starv 13133 df-tset 13137 df-ple 13138 df-ds 13140 df-unif 13141 df-0g 13299 df-topgen 13301 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-mulg 13665 df-subg 13715 df-cmn 13831 df-mgp 13892 df-ur 13931 df-ring 13969 df-cring 13970 df-subrg 14191 df-bl 14518 df-mopn 14519 df-fg 14521 df-metu 14522 df-cnfld 14529 |
| This theorem is referenced by: dvply2g 15448 |
| Copyright terms: Public domain | W3C validator |