ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g GIF version

Theorem dvply2g 15282
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑢 𝑣 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15251 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))))
21simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
32adantl 277 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
4 plyf 15253 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
54adantl 277 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
65feqmptd 5639 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
76ad2antrr 488 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
8 simplrl 535 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℕ0)
98adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0)
10 elmapi 6764 . . . . . . . . . . . . 13 (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1110ad2antll 491 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1211adantr 276 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
13 cnfldbas 14366 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
1413subrgss 14028 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
15 0cn 8071 . . . . . . . . . . . . . 14 0 ∈ ℂ
16 snssi 3779 . . . . . . . . . . . . . 14 (0 ∈ ℂ → {0} ⊆ ℂ)
1715, 16mp1i 10 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → {0} ⊆ ℂ)
1814, 17unssd 3350 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆ ℂ)
1918ad3antrrr 492 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5444 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ)
22 simplrl 535 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ‘(𝑑 + 1))) = {0})
23 simplrr 536 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))
24 nn0z 9399 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
2524uzidd 9670 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0𝑑 ∈ (ℤ𝑑))
26 peano2uz 9711 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ𝑑) → (𝑑 + 1) ∈ (ℤ𝑑))
2725, 26syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ (ℤ𝑑))
288, 27syl 14 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ (ℤ𝑑))
2928adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈ (ℤ𝑑))
30 simpr 110 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
319, 21, 22, 23, 29, 30plycoeid3 15273 . . . . . . . 8 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏)))
3231mpteq2dva 4138 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
337, 32eqtrd 2239 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
348nn0cnd 9357 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℂ)
35 1cnd 8095 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 1 ∈ ℂ)
3634, 35pncand 8391 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → ((𝑑 + 1) − 1) = 𝑑)
3736eqcomd 2212 . . . . . . . . 9 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 = ((𝑑 + 1) − 1))
3837oveq2d 5967 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1)))
3938sumeq1d 11721 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
4039mpteq2dv 4139 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
41 oveq1 5958 . . . . . . . 8 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
42 fvoveq1 5974 . . . . . . . 8 (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1)))
4341, 42oveq12d 5969 . . . . . . 7 (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
4443cbvmptv 4144 . . . . . 6 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
45 peano2nn0 9342 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
468, 45syl 14 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ ℕ0)
4733, 40, 20, 44, 46dvply1 15281 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
4814ad3antrrr 492 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
49 elfznn0 10243 . . . . . . 7 (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0)
50 peano2nn0 9342 . . . . . . . . . . . . 13 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
5150adantl 277 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
5251nn0cnd 9357 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℂ)
5320adantr 276 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ)
5453, 51ffvelcdmd 5723 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ)
5552, 54mulcld 8100 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ)
56 oveq1 5958 . . . . . . . . . . . 12 (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣))
57 oveq2 5959 . . . . . . . . . . . 12 (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
58 eqid 2206 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
5956, 57, 58ovmpog 6087 . . . . . . . . . . 11 (((𝑐 + 1) ∈ ℂ ∧ (𝑝‘(𝑐 + 1)) ∈ ℂ ∧ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
6052, 54, 55, 59syl3anc 1250 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
61 simp-4l 541 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
62 zsssubrg 14391 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
6362ad4antr 494 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
6451nn0zd 9500 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
6563, 64sseldd 3195 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
6612adantr 276 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
67 subrgsubg 14033 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
68 cnfld0 14377 . . . . . . . . . . . . . . . . . . 19 0 = (0g‘ℂfld)
6968subg0cl 13562 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
7067, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
7170ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
7271snssd 3780 . . . . . . . . . . . . . . 15 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0} ⊆ 𝑆)
73 ssequn2 3347 . . . . . . . . . . . . . . 15 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
7472, 73sylib 122 . . . . . . . . . . . . . 14 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆)
7574feq3d 5420 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0𝑆))
7666, 75mpbid 147 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0𝑆)
7776, 51ffvelcdmd 5723 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆)
78 mpocnfldmul 14369 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
7978subrgmcl 14039 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8061, 65, 77, 79syl3anc 1250 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8160, 80eqeltrrd 2284 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆)
8281fmpttd 5742 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0𝑆)
8382ffvelcdmda 5722 . . . . . . 7 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8449, 83sylan2 286 . . . . . 6 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8548, 8, 84elplyd 15257 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
8647, 85eqeltrd 2283 . . . 4 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
8786ex 115 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
8887rexlimdvva 2632 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
893, 88mpd 13 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wrex 2486  cun 3165  wss 3167  {csn 3634  cmpt 4109  cima 4682  wf 5272  cfv 5276  (class class class)co 5951  cmpo 5953  𝑚 cmap 6742  cc 7930  0cc0 7932  1c1 7933   + caddc 7935   · cmul 7937  cmin 8250  0cn0 9302  cz 9379  cuz 9655  ...cfz 10137  cexp 10690  Σcsu 11708  SubGrpcsubg 13547  SubRingcsubrg 14023  fldccnfld 14362   D cdv 15171  Polycply 15244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-nul 4174  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-iinf 4640  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-mulrcl 8031  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-0lt1 8038  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-precex 8042  ax-cnre 8043  ax-pre-ltirr 8044  ax-pre-ltwlin 8045  ax-pre-lttrn 8046  ax-pre-apti 8047  ax-pre-ltadd 8048  ax-pre-mulgt0 8049  ax-pre-mulext 8050  ax-arch 8051  ax-caucvg 8052  ax-addf 8054  ax-mulf 8055
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-tp 3642  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-tr 4147  df-id 4344  df-po 4347  df-iso 4348  df-iord 4417  df-on 4419  df-ilim 4420  df-suc 4422  df-iom 4643  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-isom 5285  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-of 6165  df-1st 6233  df-2nd 6234  df-recs 6398  df-irdg 6463  df-frec 6484  df-1o 6509  df-oadd 6513  df-er 6627  df-map 6744  df-pm 6745  df-en 6835  df-dom 6836  df-fin 6837  df-sup 7093  df-inf 7094  df-pnf 8116  df-mnf 8117  df-xr 8118  df-ltxr 8119  df-le 8120  df-sub 8252  df-neg 8253  df-reap 8655  df-ap 8662  df-div 8753  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-n0 9303  df-z 9380  df-dec 9512  df-uz 9656  df-q 9748  df-rp 9783  df-xneg 9901  df-xadd 9902  df-fz 10138  df-fzo 10272  df-seqfrec 10600  df-exp 10691  df-ihash 10928  df-cj 11197  df-re 11198  df-im 11199  df-rsqrt 11353  df-abs 11354  df-clim 11634  df-sumdc 11709  df-struct 12878  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-starv 12968  df-tset 12972  df-ple 12973  df-ds 12975  df-unif 12976  df-rest 13117  df-topn 13118  df-0g 13134  df-topgen 13136  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-mulg 13500  df-subg 13550  df-cmn 13666  df-mgp 13727  df-ur 13766  df-ring 13804  df-cring 13805  df-subrg 14025  df-psmet 14349  df-xmet 14350  df-met 14351  df-bl 14352  df-mopn 14353  df-fg 14355  df-metu 14356  df-cnfld 14363  df-top 14514  df-topon 14527  df-topsp 14547  df-bases 14559  df-ntr 14612  df-cn 14704  df-cnp 14705  df-tx 14769  df-xms 14855  df-ms 14856  df-cncf 15087  df-limced 15172  df-dvap 15173  df-ply 15246
This theorem is referenced by:  dvply2  15283
  Copyright terms: Public domain W3C validator