| Step | Hyp | Ref
 | Expression | 
| 1 |   | elply2 14971 | 
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0
∃𝑝 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))))) | 
| 2 | 1 | simprbi 275 | 
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0
∃𝑝 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) | 
| 3 | 2 | adantl 277 | 
. 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0 ∃𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑝
“ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) | 
| 4 |   | plyf 14973 | 
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) | 
| 5 | 4 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) | 
| 6 | 5 | feqmptd 5614 | 
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹‘𝑎))) | 
| 7 | 6 | ad2antrr 488 | 
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹‘𝑎))) | 
| 8 |   | simplrl 535 | 
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 ∈ ℕ0) | 
| 9 | 8 | adantr 276 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0) | 
| 10 |   | elmapi 6729 | 
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) | 
| 11 | 10 | ad2antll 491 | 
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) | 
| 12 | 11 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) | 
| 13 |   | cnfldbas 14116 | 
. . . . . . . . . . . . . 14
⊢ ℂ =
(Base‘ℂfld) | 
| 14 | 13 | subrgss 13778 | 
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ⊆ ℂ) | 
| 15 |   | 0cn 8018 | 
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℂ | 
| 16 |   | snssi 3766 | 
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) | 
| 17 | 15, 16 | mp1i 10 | 
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → {0} ⊆
ℂ) | 
| 18 | 14, 17 | unssd 3339 | 
. . . . . . . . . . . 12
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 19 | 18 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 20 | 12, 19 | fssd 5420 | 
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑝:ℕ0⟶ℂ) | 
| 21 | 20 | adantr 276 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ) | 
| 22 |   | simplrl 535 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0}) | 
| 23 |   | simplrr 536 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) | 
| 24 |   | nn0z 9346 | 
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℤ) | 
| 25 | 24 | uzidd 9616 | 
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
(ℤ≥‘𝑑)) | 
| 26 |   | peano2uz 9657 | 
. . . . . . . . . . . 12
⊢ (𝑑 ∈
(ℤ≥‘𝑑) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) | 
| 27 | 25, 26 | syl 14 | 
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
(ℤ≥‘𝑑)) | 
| 28 | 8, 27 | syl 14 | 
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) | 
| 29 | 28 | adantr 276 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) | 
| 30 |   | simpr 110 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ) | 
| 31 | 9, 21, 22, 23, 29, 30 | plycoeid3 14993 | 
. . . . . . . 8
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏))) | 
| 32 | 31 | mpteq2dva 4123 | 
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹‘𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏)))) | 
| 33 | 7, 32 | eqtrd 2229 | 
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏)))) | 
| 34 | 8 | nn0cnd 9304 | 
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 ∈ ℂ) | 
| 35 |   | 1cnd 8042 | 
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 1 ∈
ℂ) | 
| 36 | 34, 35 | pncand 8338 | 
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → ((𝑑 + 1) − 1) = 𝑑) | 
| 37 | 36 | eqcomd 2202 | 
. . . . . . . . 9
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 = ((𝑑 + 1) − 1)) | 
| 38 | 37 | oveq2d 5938 | 
. . . . . . . 8
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1))) | 
| 39 | 38 | sumeq1d 11531 | 
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) | 
| 40 | 39 | mpteq2dv 4124 | 
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) | 
| 41 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1)) | 
| 42 |   | fvoveq1 5945 | 
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1))) | 
| 43 | 41, 42 | oveq12d 5940 | 
. . . . . . 7
⊢ (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1)))) | 
| 44 | 43 | cbvmptv 4129 | 
. . . . . 6
⊢ (𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1)))) | 
| 45 |   | peano2nn0 9289 | 
. . . . . . 7
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ0) | 
| 46 | 8, 45 | syl 14 | 
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑑 + 1) ∈
ℕ0) | 
| 47 | 33, 40, 20, 44, 46 | dvply1 15001 | 
. . . . 5
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) | 
| 48 | 14 | ad3antrrr 492 | 
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑆 ⊆ ℂ) | 
| 49 |   | elfznn0 10189 | 
. . . . . . 7
⊢ (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0) | 
| 50 |   | peano2nn0 9289 | 
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ℕ0
→ (𝑐 + 1) ∈
ℕ0) | 
| 51 | 50 | adantl 277 | 
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℕ0) | 
| 52 | 51 | nn0cnd 9304 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℂ) | 
| 53 | 20 | adantr 276 | 
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ) | 
| 54 | 53, 51 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ) | 
| 55 | 52, 54 | mulcld 8047 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) | 
| 56 |   | oveq1 5929 | 
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣)) | 
| 57 |   | oveq2 5930 | 
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) | 
| 58 |   | eqid 2196 | 
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) | 
| 59 | 56, 57, 58 | ovmpog 6057 | 
. . . . . . . . . . 11
⊢ (((𝑐 + 1) ∈ ℂ ∧
(𝑝‘(𝑐 + 1)) ∈ ℂ ∧
((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) | 
| 60 | 52, 54, 55, 59 | syl3anc 1249 | 
. . . . . . . . . 10
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) | 
| 61 |   | simp-4l 541 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈
(SubRing‘ℂfld)) | 
| 62 |   | zsssubrg 14141 | 
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ℤ ⊆ 𝑆) | 
| 63 | 62 | ad4antr 494 | 
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ
⊆ 𝑆) | 
| 64 | 51 | nn0zd 9446 | 
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℤ) | 
| 65 | 63, 64 | sseldd 3184 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆) | 
| 66 | 12 | adantr 276 | 
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) | 
| 67 |   | subrgsubg 13783 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ∈
(SubGrp‘ℂfld)) | 
| 68 |   | cnfld0 14127 | 
. . . . . . . . . . . . . . . . . . 19
⊢ 0 =
(0g‘ℂfld) | 
| 69 | 68 | subg0cl 13312 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈
(SubGrp‘ℂfld) → 0 ∈ 𝑆) | 
| 70 | 67, 69 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 0 ∈ 𝑆) | 
| 71 | 70 | ad4antr 494 | 
. . . . . . . . . . . . . . . 16
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈
𝑆) | 
| 72 | 71 | snssd 3767 | 
. . . . . . . . . . . . . . 15
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0}
⊆ 𝑆) | 
| 73 |   | ssequn2 3336 | 
. . . . . . . . . . . . . . 15
⊢ ({0}
⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆) | 
| 74 | 72, 73 | sylib 122 | 
. . . . . . . . . . . . . 14
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆) | 
| 75 | 74 | feq3d 5396 | 
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0⟶𝑆)) | 
| 76 | 66, 75 | mpbid 147 | 
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶𝑆) | 
| 77 | 76, 51 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆) | 
| 78 |   | mpocnfldmul 14119 | 
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) | 
| 79 | 78 | subrgmcl 13789 | 
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆) | 
| 80 | 61, 65, 77, 79 | syl3anc 1249 | 
. . . . . . . . . 10
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆) | 
| 81 | 60, 80 | eqeltrrd 2274 | 
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆) | 
| 82 | 81 | fmpttd 5717 | 
. . . . . . . 8
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0⟶𝑆) | 
| 83 | 82 | ffvelcdmda 5697 | 
. . . . . . 7
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) | 
| 84 | 49, 83 | sylan2 286 | 
. . . . . 6
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) | 
| 85 | 48, 8, 84 | elplyd 14977 | 
. . . . 5
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) ∈ (Poly‘𝑆)) | 
| 86 | 47, 85 | eqeltrd 2273 | 
. . . 4
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) | 
| 87 | 86 | ex 115 | 
. . 3
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))) | 
| 88 | 87 | rexlimdvva 2622 | 
. 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0 ∃𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑝
“ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))) | 
| 89 | 3, 88 | mpd 13 | 
1
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |