ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g GIF version

Theorem dvply2g 15002
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑢 𝑣 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 14971 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))))
21simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
32adantl 277 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
4 plyf 14973 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
54adantl 277 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
65feqmptd 5614 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
76ad2antrr 488 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
8 simplrl 535 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℕ0)
98adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0)
10 elmapi 6729 . . . . . . . . . . . . 13 (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1110ad2antll 491 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1211adantr 276 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
13 cnfldbas 14116 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
1413subrgss 13778 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
15 0cn 8018 . . . . . . . . . . . . . 14 0 ∈ ℂ
16 snssi 3766 . . . . . . . . . . . . . 14 (0 ∈ ℂ → {0} ⊆ ℂ)
1715, 16mp1i 10 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → {0} ⊆ ℂ)
1814, 17unssd 3339 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆ ℂ)
1918ad3antrrr 492 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5420 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ)
22 simplrl 535 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ‘(𝑑 + 1))) = {0})
23 simplrr 536 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))
24 nn0z 9346 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
2524uzidd 9616 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0𝑑 ∈ (ℤ𝑑))
26 peano2uz 9657 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ𝑑) → (𝑑 + 1) ∈ (ℤ𝑑))
2725, 26syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ (ℤ𝑑))
288, 27syl 14 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ (ℤ𝑑))
2928adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈ (ℤ𝑑))
30 simpr 110 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
319, 21, 22, 23, 29, 30plycoeid3 14993 . . . . . . . 8 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏)))
3231mpteq2dva 4123 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
337, 32eqtrd 2229 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
348nn0cnd 9304 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℂ)
35 1cnd 8042 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 1 ∈ ℂ)
3634, 35pncand 8338 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → ((𝑑 + 1) − 1) = 𝑑)
3736eqcomd 2202 . . . . . . . . 9 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 = ((𝑑 + 1) − 1))
3837oveq2d 5938 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1)))
3938sumeq1d 11531 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
4039mpteq2dv 4124 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
41 oveq1 5929 . . . . . . . 8 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
42 fvoveq1 5945 . . . . . . . 8 (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1)))
4341, 42oveq12d 5940 . . . . . . 7 (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
4443cbvmptv 4129 . . . . . 6 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
45 peano2nn0 9289 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
468, 45syl 14 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ ℕ0)
4733, 40, 20, 44, 46dvply1 15001 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
4814ad3antrrr 492 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
49 elfznn0 10189 . . . . . . 7 (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0)
50 peano2nn0 9289 . . . . . . . . . . . . 13 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
5150adantl 277 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
5251nn0cnd 9304 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℂ)
5320adantr 276 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ)
5453, 51ffvelcdmd 5698 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ)
5552, 54mulcld 8047 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ)
56 oveq1 5929 . . . . . . . . . . . 12 (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣))
57 oveq2 5930 . . . . . . . . . . . 12 (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
58 eqid 2196 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
5956, 57, 58ovmpog 6057 . . . . . . . . . . 11 (((𝑐 + 1) ∈ ℂ ∧ (𝑝‘(𝑐 + 1)) ∈ ℂ ∧ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
6052, 54, 55, 59syl3anc 1249 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
61 simp-4l 541 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
62 zsssubrg 14141 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
6362ad4antr 494 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
6451nn0zd 9446 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
6563, 64sseldd 3184 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
6612adantr 276 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
67 subrgsubg 13783 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
68 cnfld0 14127 . . . . . . . . . . . . . . . . . . 19 0 = (0g‘ℂfld)
6968subg0cl 13312 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
7067, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
7170ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
7271snssd 3767 . . . . . . . . . . . . . . 15 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0} ⊆ 𝑆)
73 ssequn2 3336 . . . . . . . . . . . . . . 15 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
7472, 73sylib 122 . . . . . . . . . . . . . 14 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆)
7574feq3d 5396 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0𝑆))
7666, 75mpbid 147 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0𝑆)
7776, 51ffvelcdmd 5698 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆)
78 mpocnfldmul 14119 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
7978subrgmcl 13789 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8061, 65, 77, 79syl3anc 1249 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8160, 80eqeltrrd 2274 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆)
8281fmpttd 5717 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0𝑆)
8382ffvelcdmda 5697 . . . . . . 7 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8449, 83sylan2 286 . . . . . 6 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8548, 8, 84elplyd 14977 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
8647, 85eqeltrd 2273 . . . 4 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
8786ex 115 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
8887rexlimdvva 2622 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
893, 88mpd 13 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  cun 3155  wss 3157  {csn 3622  cmpt 4094  cima 4666  wf 5254  cfv 5258  (class class class)co 5922  cmpo 5924  𝑚 cmap 6707  cc 7877  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884  cmin 8197  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  cexp 10630  Σcsu 11518  SubGrpcsubg 13297  SubRingcsubrg 13773  fldccnfld 14112   D cdv 14891  Polycply 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999  ax-addf 8001  ax-mulf 8002
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-of 6135  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-map 6709  df-pm 6710  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-inf 7051  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-9 9056  df-n0 9250  df-z 9327  df-dec 9458  df-uz 9602  df-q 9694  df-rp 9729  df-xneg 9847  df-xadd 9848  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519  df-struct 12680  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-starv 12770  df-tset 12774  df-ple 12775  df-ds 12777  df-unif 12778  df-rest 12912  df-topn 12913  df-0g 12929  df-topgen 12931  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-mulg 13250  df-subg 13300  df-cmn 13416  df-mgp 13477  df-ur 13516  df-ring 13554  df-cring 13555  df-subrg 13775  df-psmet 14099  df-xmet 14100  df-met 14101  df-bl 14102  df-mopn 14103  df-fg 14105  df-metu 14106  df-cnfld 14113  df-top 14234  df-topon 14247  df-topsp 14267  df-bases 14279  df-ntr 14332  df-cn 14424  df-cnp 14425  df-tx 14489  df-xms 14575  df-ms 14576  df-cncf 14807  df-limced 14892  df-dvap 14893  df-ply 14966
This theorem is referenced by:  dvply2  15003
  Copyright terms: Public domain W3C validator