ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g GIF version

Theorem dvply2g 15405
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑢 𝑣 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15374 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))))
21simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
32adantl 277 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
4 plyf 15376 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
54adantl 277 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
65feqmptd 5660 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
76ad2antrr 488 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
8 simplrl 535 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℕ0)
98adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0)
10 elmapi 6787 . . . . . . . . . . . . 13 (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1110ad2antll 491 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1211adantr 276 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
13 cnfldbas 14489 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
1413subrgss 14151 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
15 0cn 8106 . . . . . . . . . . . . . 14 0 ∈ ℂ
16 snssi 3791 . . . . . . . . . . . . . 14 (0 ∈ ℂ → {0} ⊆ ℂ)
1715, 16mp1i 10 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → {0} ⊆ ℂ)
1814, 17unssd 3360 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆ ℂ)
1918ad3antrrr 492 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5462 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ)
22 simplrl 535 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ‘(𝑑 + 1))) = {0})
23 simplrr 536 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))
24 nn0z 9434 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
2524uzidd 9705 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0𝑑 ∈ (ℤ𝑑))
26 peano2uz 9746 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ𝑑) → (𝑑 + 1) ∈ (ℤ𝑑))
2725, 26syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ (ℤ𝑑))
288, 27syl 14 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ (ℤ𝑑))
2928adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈ (ℤ𝑑))
30 simpr 110 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
319, 21, 22, 23, 29, 30plycoeid3 15396 . . . . . . . 8 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏)))
3231mpteq2dva 4153 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
337, 32eqtrd 2242 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
348nn0cnd 9392 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℂ)
35 1cnd 8130 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 1 ∈ ℂ)
3634, 35pncand 8426 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → ((𝑑 + 1) − 1) = 𝑑)
3736eqcomd 2215 . . . . . . . . 9 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 = ((𝑑 + 1) − 1))
3837oveq2d 5990 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1)))
3938sumeq1d 11843 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
4039mpteq2dv 4154 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
41 oveq1 5981 . . . . . . . 8 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
42 fvoveq1 5997 . . . . . . . 8 (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1)))
4341, 42oveq12d 5992 . . . . . . 7 (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
4443cbvmptv 4159 . . . . . 6 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
45 peano2nn0 9377 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
468, 45syl 14 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ ℕ0)
4733, 40, 20, 44, 46dvply1 15404 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
4814ad3antrrr 492 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
49 elfznn0 10278 . . . . . . 7 (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0)
50 peano2nn0 9377 . . . . . . . . . . . . 13 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
5150adantl 277 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
5251nn0cnd 9392 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℂ)
5320adantr 276 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ)
5453, 51ffvelcdmd 5744 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ)
5552, 54mulcld 8135 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ)
56 oveq1 5981 . . . . . . . . . . . 12 (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣))
57 oveq2 5982 . . . . . . . . . . . 12 (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
58 eqid 2209 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
5956, 57, 58ovmpog 6110 . . . . . . . . . . 11 (((𝑐 + 1) ∈ ℂ ∧ (𝑝‘(𝑐 + 1)) ∈ ℂ ∧ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
6052, 54, 55, 59syl3anc 1252 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
61 simp-4l 541 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
62 zsssubrg 14514 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
6362ad4antr 494 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
6451nn0zd 9535 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
6563, 64sseldd 3205 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
6612adantr 276 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
67 subrgsubg 14156 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
68 cnfld0 14500 . . . . . . . . . . . . . . . . . . 19 0 = (0g‘ℂfld)
6968subg0cl 13685 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
7067, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
7170ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
7271snssd 3792 . . . . . . . . . . . . . . 15 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0} ⊆ 𝑆)
73 ssequn2 3357 . . . . . . . . . . . . . . 15 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
7472, 73sylib 122 . . . . . . . . . . . . . 14 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆)
7574feq3d 5438 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0𝑆))
7666, 75mpbid 147 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0𝑆)
7776, 51ffvelcdmd 5744 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆)
78 mpocnfldmul 14492 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
7978subrgmcl 14162 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8061, 65, 77, 79syl3anc 1252 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8160, 80eqeltrrd 2287 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆)
8281fmpttd 5763 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0𝑆)
8382ffvelcdmda 5743 . . . . . . 7 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8449, 83sylan2 286 . . . . . 6 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8548, 8, 84elplyd 15380 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
8647, 85eqeltrd 2286 . . . 4 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
8786ex 115 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
8887rexlimdvva 2636 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
893, 88mpd 13 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wrex 2489  cun 3175  wss 3177  {csn 3646  cmpt 4124  cima 4699  wf 5290  cfv 5294  (class class class)co 5974  cmpo 5976  𝑚 cmap 6765  cc 7965  0cc0 7967  1c1 7968   + caddc 7970   · cmul 7972  cmin 8285  0cn0 9337  cz 9414  cuz 9690  ...cfz 10172  cexp 10727  Σcsu 11830  SubGrpcsubg 13670  SubRingcsubrg 14146  fldccnfld 14485   D cdv 15294  Polycply 15367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-stab 835  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-of 6188  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-map 6767  df-pm 6768  df-en 6858  df-dom 6859  df-fin 6860  df-sup 7119  df-inf 7120  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-xneg 9936  df-xadd 9937  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-iress 13006  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-rest 13240  df-topn 13241  df-0g 13257  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623  df-subg 13673  df-cmn 13789  df-mgp 13850  df-ur 13889  df-ring 13927  df-cring 13928  df-subrg 14148  df-psmet 14472  df-xmet 14473  df-met 14474  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486  df-top 14637  df-topon 14650  df-topsp 14670  df-bases 14682  df-ntr 14735  df-cn 14827  df-cnp 14828  df-tx 14892  df-xms 14978  df-ms 14979  df-cncf 15210  df-limced 15295  df-dvap 15296  df-ply 15369
This theorem is referenced by:  dvply2  15406
  Copyright terms: Public domain W3C validator