ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g GIF version

Theorem dvply2g 15448
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑢 𝑣 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15417 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))))
21simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
32adantl 277 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
4 plyf 15419 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
54adantl 277 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
65feqmptd 5689 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
76ad2antrr 488 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
8 simplrl 535 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℕ0)
98adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0)
10 elmapi 6825 . . . . . . . . . . . . 13 (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1110ad2antll 491 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1211adantr 276 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
13 cnfldbas 14532 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
1413subrgss 14194 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
15 0cn 8146 . . . . . . . . . . . . . 14 0 ∈ ℂ
16 snssi 3812 . . . . . . . . . . . . . 14 (0 ∈ ℂ → {0} ⊆ ℂ)
1715, 16mp1i 10 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → {0} ⊆ ℂ)
1814, 17unssd 3380 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆ ℂ)
1918ad3antrrr 492 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5486 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ)
22 simplrl 535 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ‘(𝑑 + 1))) = {0})
23 simplrr 536 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))
24 nn0z 9474 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
2524uzidd 9745 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0𝑑 ∈ (ℤ𝑑))
26 peano2uz 9786 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ𝑑) → (𝑑 + 1) ∈ (ℤ𝑑))
2725, 26syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ (ℤ𝑑))
288, 27syl 14 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ (ℤ𝑑))
2928adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈ (ℤ𝑑))
30 simpr 110 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
319, 21, 22, 23, 29, 30plycoeid3 15439 . . . . . . . 8 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏)))
3231mpteq2dva 4174 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
337, 32eqtrd 2262 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
348nn0cnd 9432 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℂ)
35 1cnd 8170 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 1 ∈ ℂ)
3634, 35pncand 8466 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → ((𝑑 + 1) − 1) = 𝑑)
3736eqcomd 2235 . . . . . . . . 9 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 = ((𝑑 + 1) − 1))
3837oveq2d 6023 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1)))
3938sumeq1d 11885 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
4039mpteq2dv 4175 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
41 oveq1 6014 . . . . . . . 8 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
42 fvoveq1 6030 . . . . . . . 8 (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1)))
4341, 42oveq12d 6025 . . . . . . 7 (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
4443cbvmptv 4180 . . . . . 6 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
45 peano2nn0 9417 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
468, 45syl 14 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ ℕ0)
4733, 40, 20, 44, 46dvply1 15447 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
4814ad3antrrr 492 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
49 elfznn0 10318 . . . . . . 7 (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0)
50 peano2nn0 9417 . . . . . . . . . . . . 13 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
5150adantl 277 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
5251nn0cnd 9432 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℂ)
5320adantr 276 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ)
5453, 51ffvelcdmd 5773 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ)
5552, 54mulcld 8175 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ)
56 oveq1 6014 . . . . . . . . . . . 12 (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣))
57 oveq2 6015 . . . . . . . . . . . 12 (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
58 eqid 2229 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
5956, 57, 58ovmpog 6145 . . . . . . . . . . 11 (((𝑐 + 1) ∈ ℂ ∧ (𝑝‘(𝑐 + 1)) ∈ ℂ ∧ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
6052, 54, 55, 59syl3anc 1271 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
61 simp-4l 541 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
62 zsssubrg 14557 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
6362ad4antr 494 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
6451nn0zd 9575 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
6563, 64sseldd 3225 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
6612adantr 276 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
67 subrgsubg 14199 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
68 cnfld0 14543 . . . . . . . . . . . . . . . . . . 19 0 = (0g‘ℂfld)
6968subg0cl 13727 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
7067, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
7170ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
7271snssd 3813 . . . . . . . . . . . . . . 15 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0} ⊆ 𝑆)
73 ssequn2 3377 . . . . . . . . . . . . . . 15 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
7472, 73sylib 122 . . . . . . . . . . . . . 14 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆)
7574feq3d 5462 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0𝑆))
7666, 75mpbid 147 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0𝑆)
7776, 51ffvelcdmd 5773 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆)
78 mpocnfldmul 14535 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
7978subrgmcl 14205 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8061, 65, 77, 79syl3anc 1271 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8160, 80eqeltrrd 2307 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆)
8281fmpttd 5792 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0𝑆)
8382ffvelcdmda 5772 . . . . . . 7 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8449, 83sylan2 286 . . . . . 6 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8548, 8, 84elplyd 15423 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
8647, 85eqeltrd 2306 . . . 4 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
8786ex 115 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
8887rexlimdvva 2656 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
893, 88mpd 13 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wrex 2509  cun 3195  wss 3197  {csn 3666  cmpt 4145  cima 4722  wf 5314  cfv 5318  (class class class)co 6007  cmpo 6009  𝑚 cmap 6803  cc 8005  0cc0 8007  1c1 8008   + caddc 8010   · cmul 8012  cmin 8325  0cn0 9377  cz 9454  cuz 9730  ...cfz 10212  cexp 10768  Σcsu 11872  SubGrpcsubg 13712  SubRingcsubrg 14189  fldccnfld 14528   D cdv 15337  Polycply 15410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-map 6805  df-pm 6806  df-en 6896  df-dom 6897  df-fin 6898  df-sup 7159  df-inf 7160  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-xneg 9976  df-xadd 9977  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-rest 13282  df-topn 13283  df-0g 13299  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mulg 13665  df-subg 13715  df-cmn 13831  df-mgp 13892  df-ur 13931  df-ring 13969  df-cring 13970  df-subrg 14191  df-psmet 14515  df-xmet 14516  df-met 14517  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529  df-top 14680  df-topon 14693  df-topsp 14713  df-bases 14725  df-ntr 14778  df-cn 14870  df-cnp 14871  df-tx 14935  df-xms 15021  df-ms 15022  df-cncf 15253  df-limced 15338  df-dvap 15339  df-ply 15412
This theorem is referenced by:  dvply2  15449
  Copyright terms: Public domain W3C validator