ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvply2g GIF version

Theorem dvply2g 15086
Description: The derivative of a polynomial with coefficients in a subring is a polynomial with coefficients in the same ring. (Contributed by Mario Carneiro, 1-Jan-2017.) (Revised by GG, 30-Apr-2025.)
Assertion
Ref Expression
dvply2g ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))

Proof of Theorem dvply2g
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑝 𝑢 𝑣 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply2 15055 . . . 4 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))))
21simprbi 275 . . 3 (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
32adantl 277 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))))
4 plyf 15057 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
54adantl 277 . . . . . . . . 9 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ)
65feqmptd 5617 . . . . . . . 8 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
76ad2antrr 488 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹𝑎)))
8 simplrl 535 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℕ0)
98adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0)
10 elmapi 6738 . . . . . . . . . . . . 13 (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1110ad2antll 491 . . . . . . . . . . . 12 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
1211adantr 276 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
13 cnfldbas 14192 . . . . . . . . . . . . . 14 ℂ = (Base‘ℂfld)
1413subrgss 13854 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ⊆ ℂ)
15 0cn 8035 . . . . . . . . . . . . . 14 0 ∈ ℂ
16 snssi 3767 . . . . . . . . . . . . . 14 (0 ∈ ℂ → {0} ⊆ ℂ)
1715, 16mp1i 10 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → {0} ⊆ ℂ)
1814, 17unssd 3340 . . . . . . . . . . . 12 (𝑆 ∈ (SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆ ℂ)
1918ad3antrrr 492 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑆 ∪ {0}) ⊆ ℂ)
2012, 19fssd 5423 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑝:ℕ0⟶ℂ)
2120adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ)
22 simplrl 535 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ‘(𝑑 + 1))) = {0})
23 simplrr 536 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))
24 nn0z 9363 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0𝑑 ∈ ℤ)
2524uzidd 9633 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0𝑑 ∈ (ℤ𝑑))
26 peano2uz 9674 . . . . . . . . . . . 12 (𝑑 ∈ (ℤ𝑑) → (𝑑 + 1) ∈ (ℤ𝑑))
2725, 26syl 14 . . . . . . . . . . 11 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ (ℤ𝑑))
288, 27syl 14 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ (ℤ𝑑))
2928adantr 276 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈ (ℤ𝑑))
30 simpr 110 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ)
319, 21, 22, 23, 29, 30plycoeid3 15077 . . . . . . . 8 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏)))
3231mpteq2dva 4124 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
337, 32eqtrd 2229 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝𝑏) · (𝑎𝑏))))
348nn0cnd 9321 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 ∈ ℂ)
35 1cnd 8059 . . . . . . . . . . 11 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 1 ∈ ℂ)
3634, 35pncand 8355 . . . . . . . . . 10 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → ((𝑑 + 1) − 1) = 𝑑)
3736eqcomd 2202 . . . . . . . . 9 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑑 = ((𝑑 + 1) − 1))
3837oveq2d 5941 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1)))
3938sumeq1d 11548 . . . . . . 7 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏)))
4039mpteq2dv 4125 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
41 oveq1 5932 . . . . . . . 8 (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1))
42 fvoveq1 5948 . . . . . . . 8 (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1)))
4341, 42oveq12d 5943 . . . . . . 7 (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
4443cbvmptv 4130 . . . . . 6 (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1))))
45 peano2nn0 9306 . . . . . . 7 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
468, 45syl 14 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑑 + 1) ∈ ℕ0)
4733, 40, 20, 44, 46dvply1 15085 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))))
4814ad3antrrr 492 . . . . . 6 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → 𝑆 ⊆ ℂ)
49 elfznn0 10206 . . . . . . 7 (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0)
50 peano2nn0 9306 . . . . . . . . . . . . 13 (𝑐 ∈ ℕ0 → (𝑐 + 1) ∈ ℕ0)
5150adantl 277 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℕ0)
5251nn0cnd 9321 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℂ)
5320adantr 276 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ)
5453, 51ffvelcdmd 5701 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ)
5552, 54mulcld 8064 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ)
56 oveq1 5932 . . . . . . . . . . . 12 (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣))
57 oveq2 5933 . . . . . . . . . . . 12 (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
58 eqid 2196 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))
5956, 57, 58ovmpog 6061 . . . . . . . . . . 11 (((𝑐 + 1) ∈ ℂ ∧ (𝑝‘(𝑐 + 1)) ∈ ℂ ∧ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
6052, 54, 55, 59syl3anc 1249 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))
61 simp-4l 541 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈ (SubRing‘ℂfld))
62 zsssubrg 14217 . . . . . . . . . . . . 13 (𝑆 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑆)
6362ad4antr 494 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ ⊆ 𝑆)
6451nn0zd 9463 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ ℤ)
6563, 64sseldd 3185 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆)
6612adantr 276 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0}))
67 subrgsubg 13859 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubRing‘ℂfld) → 𝑆 ∈ (SubGrp‘ℂfld))
68 cnfld0 14203 . . . . . . . . . . . . . . . . . . 19 0 = (0g‘ℂfld)
6968subg0cl 13388 . . . . . . . . . . . . . . . . . 18 (𝑆 ∈ (SubGrp‘ℂfld) → 0 ∈ 𝑆)
7067, 69syl 14 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ (SubRing‘ℂfld) → 0 ∈ 𝑆)
7170ad4antr 494 . . . . . . . . . . . . . . . 16 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈ 𝑆)
7271snssd 3768 . . . . . . . . . . . . . . 15 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0} ⊆ 𝑆)
73 ssequn2 3337 . . . . . . . . . . . . . . 15 ({0} ⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆)
7472, 73sylib 122 . . . . . . . . . . . . . 14 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆)
7574feq3d 5399 . . . . . . . . . . . . 13 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0𝑆))
7666, 75mpbid 147 . . . . . . . . . . . 12 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0𝑆)
7776, 51ffvelcdmd 5701 . . . . . . . . . . 11 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆)
78 mpocnfldmul 14195 . . . . . . . . . . . 12 (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (.r‘ℂfld)
7978subrgmcl 13865 . . . . . . . . . . 11 ((𝑆 ∈ (SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8061, 65, 77, 79syl3anc 1249 . . . . . . . . . 10 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆)
8160, 80eqeltrrd 2274 . . . . . . . . 9 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆)
8281fmpttd 5720 . . . . . . . 8 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0𝑆)
8382ffvelcdmda 5700 . . . . . . 7 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8449, 83sylan2 286 . . . . . 6 (((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆)
8548, 8, 84elplyd 15061 . . . . 5 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎𝑏))) ∈ (Poly‘𝑆))
8647, 85eqeltrd 2273 . . . 4 ((((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) ∧ ((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
8786ex 115 . . 3 (((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0))) → (((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
8887rexlimdvva 2622 . 2 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚0)((𝑝 “ (ℤ‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝𝑘) · (𝑧𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)))
893, 88mpd 13 1 ((𝑆 ∈ (SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wrex 2476  cun 3155  wss 3157  {csn 3623  cmpt 4095  cima 4667  wf 5255  cfv 5259  (class class class)co 5925  cmpo 5927  𝑚 cmap 6716  cc 7894  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901  cmin 8214  0cn0 9266  cz 9343  cuz 9618  ...cfz 10100  cexp 10647  Σcsu 11535  SubGrpcsubg 13373  SubRingcsubrg 13849  fldccnfld 14188   D cdv 14975  Polycply 15048
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016  ax-addf 8018  ax-mulf 8019
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-tp 3631  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-of 6139  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-map 6718  df-pm 6719  df-en 6809  df-dom 6810  df-fin 6811  df-sup 7059  df-inf 7060  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-9 9073  df-n0 9267  df-z 9344  df-dec 9475  df-uz 9619  df-q 9711  df-rp 9746  df-xneg 9864  df-xadd 9865  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-struct 12705  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-starv 12795  df-tset 12799  df-ple 12800  df-ds 12802  df-unif 12803  df-rest 12943  df-topn 12944  df-0g 12960  df-topgen 12962  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-mulg 13326  df-subg 13376  df-cmn 13492  df-mgp 13553  df-ur 13592  df-ring 13630  df-cring 13631  df-subrg 13851  df-psmet 14175  df-xmet 14176  df-met 14177  df-bl 14178  df-mopn 14179  df-fg 14181  df-metu 14182  df-cnfld 14189  df-top 14318  df-topon 14331  df-topsp 14351  df-bases 14363  df-ntr 14416  df-cn 14508  df-cnp 14509  df-tx 14573  df-xms 14659  df-ms 14660  df-cncf 14891  df-limced 14976  df-dvap 14977  df-ply 15050
This theorem is referenced by:  dvply2  15087
  Copyright terms: Public domain W3C validator