| Step | Hyp | Ref
| Expression |
| 1 | | elply2 15055 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑑 ∈ ℕ0
∃𝑝 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))))) |
| 2 | 1 | simprbi 275 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑑 ∈ ℕ0
∃𝑝 ∈ ((𝑆 ∪ {0})
↑𝑚 ℕ0)((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) |
| 3 | 2 | adantl 277 |
. 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → ∃𝑑 ∈ ℕ0 ∃𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑝
“ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) |
| 4 | | plyf 15057 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| 5 | 4 | adantl 277 |
. . . . . . . . 9
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹:ℂ⟶ℂ) |
| 6 | 5 | feqmptd 5617 |
. . . . . . . 8
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹‘𝑎))) |
| 7 | 6 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ (𝐹‘𝑎))) |
| 8 | | simplrl 535 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 ∈ ℕ0) |
| 9 | 8 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑑 ∈ ℕ0) |
| 10 | | elmapi 6738 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) |
| 11 | 10 | ad2antll 491 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) |
| 12 | 11 | adantr 276 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) |
| 13 | | cnfldbas 14192 |
. . . . . . . . . . . . . 14
⊢ ℂ =
(Base‘ℂfld) |
| 14 | 13 | subrgss 13854 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ⊆ ℂ) |
| 15 | | 0cn 8035 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℂ |
| 16 | | snssi 3767 |
. . . . . . . . . . . . . 14
⊢ (0 ∈
ℂ → {0} ⊆ ℂ) |
| 17 | 15, 16 | mp1i 10 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → {0} ⊆
ℂ) |
| 18 | 14, 17 | unssd 3340 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈
(SubRing‘ℂfld) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 19 | 18 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑆 ∪ {0}) ⊆
ℂ) |
| 20 | 12, 19 | fssd 5423 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑝:ℕ0⟶ℂ) |
| 21 | 20 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑝:ℕ0⟶ℂ) |
| 22 | | simplrl 535 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0}) |
| 23 | | simplrr 536 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) |
| 24 | | nn0z 9363 |
. . . . . . . . . . . . 13
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
ℤ) |
| 25 | 24 | uzidd 9633 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈ ℕ0
→ 𝑑 ∈
(ℤ≥‘𝑑)) |
| 26 | | peano2uz 9674 |
. . . . . . . . . . . 12
⊢ (𝑑 ∈
(ℤ≥‘𝑑) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) |
| 27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
(ℤ≥‘𝑑)) |
| 28 | 8, 27 | syl 14 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) |
| 29 | 28 | adantr 276 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝑑 + 1) ∈
(ℤ≥‘𝑑)) |
| 30 | | simpr 110 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → 𝑎 ∈ ℂ) |
| 31 | 9, 21, 22, 23, 29, 30 | plycoeid3 15077 |
. . . . . . . 8
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) = Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏))) |
| 32 | 31 | mpteq2dva 4124 |
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ (𝐹‘𝑎)) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏)))) |
| 33 | 7, 32 | eqtrd 2229 |
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝐹 = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...(𝑑 + 1))((𝑝‘𝑏) · (𝑎↑𝑏)))) |
| 34 | 8 | nn0cnd 9321 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 ∈ ℂ) |
| 35 | | 1cnd 8059 |
. . . . . . . . . . 11
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 1 ∈
ℂ) |
| 36 | 34, 35 | pncand 8355 |
. . . . . . . . . 10
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → ((𝑑 + 1) − 1) = 𝑑) |
| 37 | 36 | eqcomd 2202 |
. . . . . . . . 9
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑑 = ((𝑑 + 1) − 1)) |
| 38 | 37 | oveq2d 5941 |
. . . . . . . 8
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (0...𝑑) = (0...((𝑑 + 1) − 1))) |
| 39 | 38 | sumeq1d 11548 |
. . . . . . 7
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)) = Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) |
| 40 | 39 | mpteq2dv 4125 |
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...((𝑑 + 1) − 1))(((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) |
| 41 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑐 + 1) = (𝑏 + 1)) |
| 42 | | fvoveq1 5948 |
. . . . . . . 8
⊢ (𝑐 = 𝑏 → (𝑝‘(𝑐 + 1)) = (𝑝‘(𝑏 + 1))) |
| 43 | 41, 42 | oveq12d 5943 |
. . . . . . 7
⊢ (𝑐 = 𝑏 → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) = ((𝑏 + 1) · (𝑝‘(𝑏 + 1)))) |
| 44 | 43 | cbvmptv 4130 |
. . . . . 6
⊢ (𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1)))) = (𝑏 ∈ ℕ0 ↦ ((𝑏 + 1) · (𝑝‘(𝑏 + 1)))) |
| 45 | | peano2nn0 9306 |
. . . . . . 7
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ0) |
| 46 | 8, 45 | syl 14 |
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑑 + 1) ∈
ℕ0) |
| 47 | 33, 40, 20, 44, 46 | dvply1 15085 |
. . . . 5
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (ℂ D 𝐹) = (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏)))) |
| 48 | 14 | ad3antrrr 492 |
. . . . . 6
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → 𝑆 ⊆ ℂ) |
| 49 | | elfznn0 10206 |
. . . . . . 7
⊢ (𝑏 ∈ (0...𝑑) → 𝑏 ∈ ℕ0) |
| 50 | | peano2nn0 9306 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ ℕ0
→ (𝑐 + 1) ∈
ℕ0) |
| 51 | 50 | adantl 277 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℕ0) |
| 52 | 51 | nn0cnd 9321 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℂ) |
| 53 | 20 | adantr 276 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶ℂ) |
| 54 | 53, 51 | ffvelcdmd 5701 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ ℂ) |
| 55 | 52, 54 | mulcld 8064 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) |
| 56 | | oveq1 5932 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝑐 + 1) → (𝑢 · 𝑣) = ((𝑐 + 1) · 𝑣)) |
| 57 | | oveq2 5933 |
. . . . . . . . . . . 12
⊢ (𝑣 = (𝑝‘(𝑐 + 1)) → ((𝑐 + 1) · 𝑣) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) |
| 58 | | eqid 2196 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) = (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) |
| 59 | 56, 57, 58 | ovmpog 6061 |
. . . . . . . . . . 11
⊢ (((𝑐 + 1) ∈ ℂ ∧
(𝑝‘(𝑐 + 1)) ∈ ℂ ∧
((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ ℂ) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) |
| 60 | 52, 54, 55, 59 | syl3anc 1249 |
. . . . . . . . . 10
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) = ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))) |
| 61 | | simp-4l 541 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑆 ∈
(SubRing‘ℂfld)) |
| 62 | | zsssubrg 14217 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈
(SubRing‘ℂfld) → ℤ ⊆ 𝑆) |
| 63 | 62 | ad4antr 494 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ℤ
⊆ 𝑆) |
| 64 | 51 | nn0zd 9463 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈
ℤ) |
| 65 | 63, 64 | sseldd 3185 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑐 + 1) ∈ 𝑆) |
| 66 | 12 | adantr 276 |
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶(𝑆 ∪ {0})) |
| 67 | | subrgsubg 13859 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 𝑆 ∈
(SubGrp‘ℂfld)) |
| 68 | | cnfld0 14203 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 =
(0g‘ℂfld) |
| 69 | 68 | subg0cl 13388 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑆 ∈
(SubGrp‘ℂfld) → 0 ∈ 𝑆) |
| 70 | 67, 69 | syl 14 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑆 ∈
(SubRing‘ℂfld) → 0 ∈ 𝑆) |
| 71 | 70 | ad4antr 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 0 ∈
𝑆) |
| 72 | 71 | snssd 3768 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → {0}
⊆ 𝑆) |
| 73 | | ssequn2 3337 |
. . . . . . . . . . . . . . 15
⊢ ({0}
⊆ 𝑆 ↔ (𝑆 ∪ {0}) = 𝑆) |
| 74 | 72, 73 | sylib 122 |
. . . . . . . . . . . . . 14
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑆 ∪ {0}) = 𝑆) |
| 75 | 74 | feq3d 5399 |
. . . . . . . . . . . . 13
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝:ℕ0⟶(𝑆 ∪ {0}) ↔ 𝑝:ℕ0⟶𝑆)) |
| 76 | 66, 75 | mpbid 147 |
. . . . . . . . . . . 12
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → 𝑝:ℕ0⟶𝑆) |
| 77 | 76, 51 | ffvelcdmd 5701 |
. . . . . . . . . . 11
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → (𝑝‘(𝑐 + 1)) ∈ 𝑆) |
| 78 | | mpocnfldmul 14195 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣)) =
(.r‘ℂfld) |
| 79 | 78 | subrgmcl 13865 |
. . . . . . . . . . 11
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ (𝑐 + 1) ∈ 𝑆 ∧ (𝑝‘(𝑐 + 1)) ∈ 𝑆) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆) |
| 80 | 61, 65, 77, 79 | syl3anc 1249 |
. . . . . . . . . 10
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1)(𝑢 ∈ ℂ, 𝑣 ∈ ℂ ↦ (𝑢 · 𝑣))(𝑝‘(𝑐 + 1))) ∈ 𝑆) |
| 81 | 60, 80 | eqeltrrd 2274 |
. . . . . . . . 9
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑐 ∈ ℕ0) → ((𝑐 + 1) · (𝑝‘(𝑐 + 1))) ∈ 𝑆) |
| 82 | 81 | fmpttd 5720 |
. . . . . . . 8
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1)))):ℕ0⟶𝑆) |
| 83 | 82 | ffvelcdmda 5700 |
. . . . . . 7
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑏 ∈ ℕ0) → ((𝑐 ∈ ℕ0
↦ ((𝑐 + 1) ·
(𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) |
| 84 | 49, 83 | sylan2 286 |
. . . . . 6
⊢
(((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) ∧ 𝑏 ∈ (0...𝑑)) → ((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) ∈ 𝑆) |
| 85 | 48, 8, 84 | elplyd 15061 |
. . . . 5
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (𝑎 ∈ ℂ ↦ Σ𝑏 ∈ (0...𝑑)(((𝑐 ∈ ℕ0 ↦ ((𝑐 + 1) · (𝑝‘(𝑐 + 1))))‘𝑏) · (𝑎↑𝑏))) ∈ (Poly‘𝑆)) |
| 86 | 47, 85 | eqeltrd 2273 |
. . . 4
⊢ ((((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) ∧ ((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘))))) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |
| 87 | 86 | ex 115 |
. . 3
⊢ (((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) ∧ (𝑑 ∈ ℕ0 ∧ 𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0))) → (((𝑝 “ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))) |
| 88 | 87 | rexlimdvva 2622 |
. 2
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (∃𝑑 ∈ ℕ0 ∃𝑝 ∈ ((𝑆 ∪ {0}) ↑𝑚
ℕ0)((𝑝
“ (ℤ≥‘(𝑑 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)((𝑝‘𝑘) · (𝑧↑𝑘)))) → (ℂ D 𝐹) ∈ (Poly‘𝑆))) |
| 89 | 3, 88 | mpd 13 |
1
⊢ ((𝑆 ∈
(SubRing‘ℂfld) ∧ 𝐹 ∈ (Poly‘𝑆)) → (ℂ D 𝐹) ∈ (Poly‘𝑆)) |