| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subrgring | GIF version | ||
| Description: A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgring.1 | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| Ref | Expression |
|---|---|
| subrgring | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgring.1 | . 2 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | eqid 2196 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | eqid 2196 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 4 | 2, 3 | issubrg 13855 | . . . 4 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ (Base‘𝑅) ∧ (1r‘𝑅) ∈ 𝐴))) |
| 5 | 4 | simplbi 274 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring)) |
| 6 | 5 | simprd 114 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝑅 ↾s 𝐴) ∈ Ring) |
| 7 | 1, 6 | eqeltrid 2283 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ⊆ wss 3157 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 ↾s cress 12706 1rcur 13593 Ringcrg 13630 SubRingcsubrg 13851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-ov 5928 df-inn 9010 df-ndx 12708 df-slot 12709 df-base 12711 df-subrg 13853 |
| This theorem is referenced by: subrgcrng 13859 subrgsubg 13861 subrg1 13865 subrgmcl 13867 subrgsubm 13868 subrgdvds 13869 subrguss 13870 subrginv 13871 subrgdv 13872 subrgunit 13873 subrgugrp 13874 subrgnzr 13876 subsubrg 13879 resrhm 13882 resrhm2b 13883 sralmod 14084 |
| Copyright terms: Public domain | W3C validator |