MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0lid Structured version   Visualization version   GIF version

Theorem nv0lid 30616
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0id.1 𝑋 = (BaseSet‘𝑈)
nv0id.2 𝐺 = ( +𝑣𝑈)
nv0id.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nv0lid ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)

Proof of Theorem nv0lid
StepHypRef Expression
1 nv0id.2 . . . . 5 𝐺 = ( +𝑣𝑈)
2 nv0id.6 . . . . 5 𝑍 = (0vec𝑈)
31, 20vfval 30586 . . . 4 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
43oveq1d 7361 . . 3 (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
54adantr 480 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
61nvgrp 30597 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
7 nv0id.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
87, 1bafval 30584 . . . 4 𝑋 = ran 𝐺
9 eqid 2731 . . . 4 (GId‘𝐺) = (GId‘𝐺)
108, 9grpolid 30496 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
116, 10sylan 580 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
125, 11eqtrd 2766 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  GrpOpcgr 30469  GIdcgi 30470  NrmCVeccnv 30564   +𝑣 cpv 30565  BaseSetcba 30566  0veccn0v 30568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-grpo 30473  df-gid 30474  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580
This theorem is referenced by:  nvpncan2  30633  nvmeq0  30638  imsmetlem  30670  ipdirilem  30809
  Copyright terms: Public domain W3C validator