Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nv0lid | Structured version Visualization version GIF version |
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nv0id.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nv0id.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nv0lid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nv0id.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | nv0id.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 28968 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
4 | 3 | oveq1d 7290 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
5 | 4 | adantr 481 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
6 | 1 | nvgrp 28979 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
7 | nv0id.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | bafval 28966 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
9 | eqid 2738 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 8, 9 | grpolid 28878 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
11 | 6, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
12 | 5, 11 | eqtrd 2778 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 GrpOpcgr 28851 GIdcgi 28852 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 0veccn0v 28950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 |
This theorem is referenced by: nvpncan2 29015 nvmeq0 29020 imsmetlem 29052 ipdirilem 29191 |
Copyright terms: Public domain | W3C validator |