MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0lid Structured version   Visualization version   GIF version

Theorem nv0lid 30580
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0id.1 𝑋 = (BaseSet‘𝑈)
nv0id.2 𝐺 = ( +𝑣𝑈)
nv0id.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nv0lid ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)

Proof of Theorem nv0lid
StepHypRef Expression
1 nv0id.2 . . . . 5 𝐺 = ( +𝑣𝑈)
2 nv0id.6 . . . . 5 𝑍 = (0vec𝑈)
31, 20vfval 30550 . . . 4 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
43oveq1d 7364 . . 3 (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
54adantr 480 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴))
61nvgrp 30561 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
7 nv0id.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
87, 1bafval 30548 . . . 4 𝑋 = ran 𝐺
9 eqid 2729 . . . 4 (GId‘𝐺) = (GId‘𝐺)
108, 9grpolid 30460 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
116, 10sylan 580 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴)
125, 11eqtrd 2764 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑍𝐺𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  GrpOpcgr 30433  GIdcgi 30434  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530  0veccn0v 30532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-1st 7924  df-2nd 7925  df-grpo 30437  df-gid 30438  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-nmcv 30544
This theorem is referenced by:  nvpncan2  30597  nvmeq0  30602  imsmetlem  30634  ipdirilem  30773
  Copyright terms: Public domain W3C validator