MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nv0lid Structured version   Visualization version   GIF version

Theorem nv0lid 30154
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nv0id.1 𝑋 = (BaseSetβ€˜π‘ˆ)
nv0id.2 𝐺 = ( +𝑣 β€˜π‘ˆ)
nv0id.6 𝑍 = (0vecβ€˜π‘ˆ)
Assertion
Ref Expression
nv0lid ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (𝑍𝐺𝐴) = 𝐴)

Proof of Theorem nv0lid
StepHypRef Expression
1 nv0id.2 . . . . 5 𝐺 = ( +𝑣 β€˜π‘ˆ)
2 nv0id.6 . . . . 5 𝑍 = (0vecβ€˜π‘ˆ)
31, 20vfval 30124 . . . 4 (π‘ˆ ∈ NrmCVec β†’ 𝑍 = (GIdβ€˜πΊ))
43oveq1d 7428 . . 3 (π‘ˆ ∈ NrmCVec β†’ (𝑍𝐺𝐴) = ((GIdβ€˜πΊ)𝐺𝐴))
54adantr 479 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (𝑍𝐺𝐴) = ((GIdβ€˜πΊ)𝐺𝐴))
61nvgrp 30135 . . 3 (π‘ˆ ∈ NrmCVec β†’ 𝐺 ∈ GrpOp)
7 nv0id.1 . . . . 5 𝑋 = (BaseSetβ€˜π‘ˆ)
87, 1bafval 30122 . . . 4 𝑋 = ran 𝐺
9 eqid 2730 . . . 4 (GIdβ€˜πΊ) = (GIdβ€˜πΊ)
108, 9grpolid 30034 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺𝐴) = 𝐴)
116, 10sylan 578 . 2 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ ((GIdβ€˜πΊ)𝐺𝐴) = 𝐴)
125, 11eqtrd 2770 1 ((π‘ˆ ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) β†’ (𝑍𝐺𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1539   ∈ wcel 2104  β€˜cfv 6544  (class class class)co 7413  GrpOpcgr 30007  GIdcgi 30008  NrmCVeccnv 30102   +𝑣 cpv 30103  BaseSetcba 30104  0veccn0v 30106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-1st 7979  df-2nd 7980  df-grpo 30011  df-gid 30012  df-ablo 30063  df-vc 30077  df-nv 30110  df-va 30113  df-ba 30114  df-sm 30115  df-0v 30116  df-nmcv 30118
This theorem is referenced by:  nvpncan2  30171  nvmeq0  30176  imsmetlem  30208  ipdirilem  30347
  Copyright terms: Public domain W3C validator