Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nv0lid | Structured version Visualization version GIF version |
Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nv0id.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nv0id.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nv0lid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nv0id.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | nv0id.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 28869 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
4 | 3 | oveq1d 7270 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
5 | 4 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
6 | 1 | nvgrp 28880 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
7 | nv0id.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | bafval 28867 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
9 | eqid 2738 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
10 | 8, 9 | grpolid 28779 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
11 | 6, 10 | sylan 579 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
12 | 5, 11 | eqtrd 2778 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 (class class class)co 7255 GrpOpcgr 28752 GIdcgi 28753 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 0veccn0v 28851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 |
This theorem is referenced by: nvpncan2 28916 nvmeq0 28921 imsmetlem 28953 ipdirilem 29092 |
Copyright terms: Public domain | W3C validator |