| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nv0lid | Structured version Visualization version GIF version | ||
| Description: The zero vector is a left identity element. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nv0id.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nv0id.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nv0id.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nv0lid | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv0id.2 | . . . . 5 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | nv0id.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | 0vfval 30508 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
| 4 | 3 | oveq1d 7384 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = ((GId‘𝐺)𝐺𝐴)) |
| 6 | 1 | nvgrp 30519 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 7 | nv0id.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 1 | bafval 30506 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 9 | eqid 2729 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 10 | 8, 9 | grpolid 30418 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
| 11 | 6, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((GId‘𝐺)𝐺𝐴) = 𝐴) |
| 12 | 5, 11 | eqtrd 2764 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 GrpOpcgr 30391 GIdcgi 30392 NrmCVeccnv 30486 +𝑣 cpv 30487 BaseSetcba 30488 0veccn0v 30490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-1st 7947 df-2nd 7948 df-grpo 30395 df-gid 30396 df-ablo 30447 df-vc 30461 df-nv 30494 df-va 30497 df-ba 30498 df-sm 30499 df-0v 30500 df-nmcv 30502 |
| This theorem is referenced by: nvpncan2 30555 nvmeq0 30560 imsmetlem 30592 ipdirilem 30731 |
| Copyright terms: Public domain | W3C validator |