| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvlinv | Structured version Visualization version GIF version | ||
| Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvrinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvrinv.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvlinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30603 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 3 | nvrinv.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30590 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 5 | eqid 2736 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 6 | eqid 2736 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 7 | 4, 5, 6 | grpolinv 30512 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
| 8 | 2, 7 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
| 9 | nvrinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 10 | 3, 1, 9, 6 | nvinv 30625 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴)) |
| 11 | 10 | oveq1d 7425 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (((inv‘𝐺)‘𝐴)𝐺𝐴)) |
| 12 | nvrinv.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 13 | 1, 12 | 0vfval 30592 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘𝐺)) |
| 15 | 8, 11, 14 | 3eqtr4d 2781 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 1c1 11135 -cneg 11472 GrpOpcgr 30475 GIdcgi 30476 invcgn 30477 NrmCVeccnv 30570 +𝑣 cpv 30571 BaseSetcba 30572 ·𝑠OLD cns 30573 0veccn0v 30574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-ltxr 11279 df-sub 11473 df-neg 11474 df-grpo 30479 df-gid 30480 df-ginv 30481 df-ablo 30531 df-vc 30545 df-nv 30578 df-va 30581 df-ba 30582 df-sm 30583 df-0v 30584 df-nmcv 30586 |
| This theorem is referenced by: nvabs 30658 imsmetlem 30676 lno0 30742 |
| Copyright terms: Public domain | W3C validator |