![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvlinv | Structured version Visualization version GIF version |
Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvrinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvrinv.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvlinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvgrp 28044 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
3 | nvrinv.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3, 1 | bafval 28031 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
5 | eqid 2778 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
6 | eqid 2778 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
7 | 4, 5, 6 | grpolinv 27953 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
8 | 2, 7 | sylan 575 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) |
9 | nvrinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
10 | 3, 1, 9, 6 | nvinv 28066 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴)) |
11 | 10 | oveq1d 6937 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (((inv‘𝐺)‘𝐴)𝐺𝐴)) |
12 | nvrinv.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
13 | 1, 12 | 0vfval 28033 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
14 | 13 | adantr 474 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘𝐺)) |
15 | 8, 11, 14 | 3eqtr4d 2824 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ‘cfv 6135 (class class class)co 6922 1c1 10273 -cneg 10607 GrpOpcgr 27916 GIdcgi 27917 invcgn 27918 NrmCVeccnv 28011 +𝑣 cpv 28012 BaseSetcba 28013 ·𝑠OLD cns 28014 0veccn0v 28015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4672 df-iun 4755 df-br 4887 df-opab 4949 df-mpt 4966 df-id 5261 df-po 5274 df-so 5275 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-1st 7445 df-2nd 7446 df-er 8026 df-en 8242 df-dom 8243 df-sdom 8244 df-pnf 10413 df-mnf 10414 df-ltxr 10416 df-sub 10608 df-neg 10609 df-grpo 27920 df-gid 27921 df-ginv 27922 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-nmcv 28027 |
This theorem is referenced by: nvabs 28099 imsmetlem 28117 lno0 28183 |
Copyright terms: Public domain | W3C validator |