|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nvlinv | Structured version Visualization version GIF version | ||
| Description: Minus a vector plus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| nvrinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) | 
| nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) | 
| nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | 
| nvrinv.6 | ⊢ 𝑍 = (0vec‘𝑈) | 
| Ref | Expression | 
|---|---|
| nvlinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nvrinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30637 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) | 
| 3 | nvrinv.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30624 | . . . 4 ⊢ 𝑋 = ran 𝐺 | 
| 5 | eqid 2736 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 6 | eqid 2736 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 7 | 4, 5, 6 | grpolinv 30546 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) | 
| 8 | 2, 7 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (((inv‘𝐺)‘𝐴)𝐺𝐴) = (GId‘𝐺)) | 
| 9 | nvrinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 10 | 3, 1, 9, 6 | nvinv 30659 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴)) | 
| 11 | 10 | oveq1d 7447 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = (((inv‘𝐺)‘𝐴)𝐺𝐴)) | 
| 12 | nvrinv.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 13 | 1, 12 | 0vfval 30626 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) | 
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘𝐺)) | 
| 15 | 8, 11, 14 | 3eqtr4d 2786 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → ((-1𝑆𝐴)𝐺𝐴) = 𝑍) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 1c1 11157 -cneg 11494 GrpOpcgr 30509 GIdcgi 30510 invcgn 30511 NrmCVeccnv 30604 +𝑣 cpv 30605 BaseSetcba 30606 ·𝑠OLD cns 30607 0veccn0v 30608 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-ltxr 11301 df-sub 11495 df-neg 11496 df-grpo 30513 df-gid 30514 df-ginv 30515 df-ablo 30565 df-vc 30579 df-nv 30612 df-va 30615 df-ba 30616 df-sm 30617 df-0v 30618 df-nmcv 30620 | 
| This theorem is referenced by: nvabs 30692 imsmetlem 30710 lno0 30776 | 
| Copyright terms: Public domain | W3C validator |