Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvsz | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvsz.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvsz.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvsz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 28497 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | eqid 2758 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 28485 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
5 | nvsz.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 28487 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | eqid 2758 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 28486 | . . . 4 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
9 | eqid 2758 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
10 | 4, 6, 8, 9 | vcz 28457 | . . 3 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
11 | 2, 10 | sylan 583 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
12 | nvsz.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
13 | 3, 12 | 0vfval 28488 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
14 | 13 | adantr 484 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
15 | 14 | oveq2d 7166 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣 ‘𝑈)))) |
16 | 11, 15, 14 | 3eqtr4d 2803 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 1st c1st 7691 ℂcc 10573 GIdcgi 28372 CVecOLDcvc 28440 NrmCVeccnv 28466 +𝑣 cpv 28467 BaseSetcba 28468 ·𝑠OLD cns 28469 0veccn0v 28470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-po 5443 df-so 5444 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-1st 7693 df-2nd 7694 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-pnf 10715 df-mnf 10716 df-ltxr 10718 df-grpo 28375 df-gid 28376 df-ginv 28377 df-ablo 28427 df-vc 28441 df-nv 28474 df-va 28477 df-ba 28478 df-sm 28479 df-0v 28480 df-nmcv 28482 |
This theorem is referenced by: nvmul0or 28532 nvnd 28570 dip0r 28599 0lno 28672 |
Copyright terms: Public domain | W3C validator |