MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsz Structured version   Visualization version   GIF version

Theorem nvsz 30573
Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvsz.4 𝑆 = ( ·𝑠OLD𝑈)
nvsz.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvsz ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem nvsz
StepHypRef Expression
1 eqid 2730 . . . 4 (1st𝑈) = (1st𝑈)
21nvvc 30550 . . 3 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2730 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30538 . . . 4 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvsz.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30540 . . . 4 𝑆 = (2nd ‘(1st𝑈))
7 eqid 2730 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
87, 3bafval 30539 . . . 4 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
9 eqid 2730 . . . 4 (GId‘( +𝑣𝑈)) = (GId‘( +𝑣𝑈))
104, 6, 8, 9vcz 30510 . . 3 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣𝑈))) = (GId‘( +𝑣𝑈)))
112, 10sylan 580 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣𝑈))) = (GId‘( +𝑣𝑈)))
12 nvsz.6 . . . . 5 𝑍 = (0vec𝑈)
133, 120vfval 30541 . . . 4 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣𝑈)))
1413adantr 480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣𝑈)))
1514oveq2d 7405 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣𝑈))))
1611, 15, 143eqtr4d 2775 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6513  (class class class)co 7389  1st c1st 7968  cc 11072  GIdcgi 30425  CVecOLDcvc 30493  NrmCVeccnv 30519   +𝑣 cpv 30520  BaseSetcba 30521   ·𝑠OLD cns 30522  0veccn0v 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-po 5548  df-so 5549  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-1st 7970  df-2nd 7971  df-er 8673  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-ltxr 11219  df-grpo 30428  df-gid 30429  df-ginv 30430  df-ablo 30480  df-vc 30494  df-nv 30527  df-va 30530  df-ba 30531  df-sm 30532  df-0v 30533  df-nmcv 30535
This theorem is referenced by:  nvmul0or  30585  nvnd  30623  dip0r  30652  0lno  30725
  Copyright terms: Public domain W3C validator