Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvsz | Structured version Visualization version GIF version |
Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvsz.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvsz.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvsz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
2 | 1 | nvvc 28986 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
3 | eqid 2739 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
4 | 3 | vafval 28974 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
5 | nvsz.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
6 | 5 | smfval 28976 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
7 | eqid 2739 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | 7, 3 | bafval 28975 | . . . 4 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
9 | eqid 2739 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
10 | 4, 6, 8, 9 | vcz 28946 | . . 3 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
11 | 2, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
12 | nvsz.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
13 | 3, 12 | 0vfval 28977 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
15 | 14 | oveq2d 7300 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣 ‘𝑈)))) |
16 | 11, 15, 14 | 3eqtr4d 2789 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2107 ‘cfv 6437 (class class class)co 7284 1st c1st 7838 ℂcc 10878 GIdcgi 28861 CVecOLDcvc 28929 NrmCVeccnv 28955 +𝑣 cpv 28956 BaseSetcba 28957 ·𝑠OLD cns 28958 0veccn0v 28959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-1st 7840 df-2nd 7841 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-grpo 28864 df-gid 28865 df-ginv 28866 df-ablo 28916 df-vc 28930 df-nv 28963 df-va 28966 df-ba 28967 df-sm 28968 df-0v 28969 df-nmcv 28971 |
This theorem is referenced by: nvmul0or 29021 nvnd 29059 dip0r 29088 0lno 29161 |
Copyright terms: Public domain | W3C validator |