MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvsz Structured version   Visualization version   GIF version

Theorem nvsz 30540
Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvsz.4 𝑆 = ( ·𝑠OLD𝑈)
nvsz.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvsz ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)

Proof of Theorem nvsz
StepHypRef Expression
1 eqid 2729 . . . 4 (1st𝑈) = (1st𝑈)
21nvvc 30517 . . 3 (𝑈 ∈ NrmCVec → (1st𝑈) ∈ CVecOLD)
3 eqid 2729 . . . . 5 ( +𝑣𝑈) = ( +𝑣𝑈)
43vafval 30505 . . . 4 ( +𝑣𝑈) = (1st ‘(1st𝑈))
5 nvsz.4 . . . . 5 𝑆 = ( ·𝑠OLD𝑈)
65smfval 30507 . . . 4 𝑆 = (2nd ‘(1st𝑈))
7 eqid 2729 . . . . 5 (BaseSet‘𝑈) = (BaseSet‘𝑈)
87, 3bafval 30506 . . . 4 (BaseSet‘𝑈) = ran ( +𝑣𝑈)
9 eqid 2729 . . . 4 (GId‘( +𝑣𝑈)) = (GId‘( +𝑣𝑈))
104, 6, 8, 9vcz 30477 . . 3 (((1st𝑈) ∈ CVecOLD𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣𝑈))) = (GId‘( +𝑣𝑈)))
112, 10sylan 580 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣𝑈))) = (GId‘( +𝑣𝑈)))
12 nvsz.6 . . . . 5 𝑍 = (0vec𝑈)
133, 120vfval 30508 . . . 4 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣𝑈)))
1413adantr 480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣𝑈)))
1514oveq2d 7385 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣𝑈))))
1611, 15, 143eqtr4d 2774 1 ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  1st c1st 7945  cc 11042  GIdcgi 30392  CVecOLDcvc 30460  NrmCVeccnv 30486   +𝑣 cpv 30487  BaseSetcba 30488   ·𝑠OLD cns 30489  0veccn0v 30490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-1st 7947  df-2nd 7948  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-grpo 30395  df-gid 30396  df-ginv 30397  df-ablo 30447  df-vc 30461  df-nv 30494  df-va 30497  df-ba 30498  df-sm 30499  df-0v 30500  df-nmcv 30502
This theorem is referenced by:  nvmul0or  30552  nvnd  30590  dip0r  30619  0lno  30692
  Copyright terms: Public domain W3C validator