| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvsz | Structured version Visualization version GIF version | ||
| Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvsz.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvsz.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvsz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30550 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 3 | eqid 2730 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30538 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 5 | nvsz.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30540 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 7 | eqid 2730 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30539 | . . . 4 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 9 | eqid 2730 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
| 10 | 4, 6, 8, 9 | vcz 30510 | . . 3 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
| 11 | 2, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
| 12 | nvsz.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
| 13 | 3, 12 | 0vfval 30541 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 15 | 14 | oveq2d 7405 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣 ‘𝑈)))) |
| 16 | 11, 15, 14 | 3eqtr4d 2775 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 ℂcc 11072 GIdcgi 30425 CVecOLDcvc 30493 NrmCVeccnv 30519 +𝑣 cpv 30520 BaseSetcba 30521 ·𝑠OLD cns 30522 0veccn0v 30523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-1st 7970 df-2nd 7971 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-grpo 30428 df-gid 30429 df-ginv 30430 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-nmcv 30535 |
| This theorem is referenced by: nvmul0or 30585 nvnd 30623 dip0r 30652 0lno 30725 |
| Copyright terms: Public domain | W3C validator |