| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvsz | Structured version Visualization version GIF version | ||
| Description: Anything times the zero vector is the zero vector. (Contributed by NM, 28-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvsz.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvsz.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvsz | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (1st ‘𝑈) = (1st ‘𝑈) | |
| 2 | 1 | nvvc 30562 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (1st ‘𝑈) ∈ CVecOLD) |
| 3 | eqid 2734 | . . . . 5 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 4 | 3 | vafval 30550 | . . . 4 ⊢ ( +𝑣 ‘𝑈) = (1st ‘(1st ‘𝑈)) |
| 5 | nvsz.4 | . . . . 5 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 6 | 5 | smfval 30552 | . . . 4 ⊢ 𝑆 = (2nd ‘(1st ‘𝑈)) |
| 7 | eqid 2734 | . . . . 5 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
| 8 | 7, 3 | bafval 30551 | . . . 4 ⊢ (BaseSet‘𝑈) = ran ( +𝑣 ‘𝑈) |
| 9 | eqid 2734 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
| 10 | 4, 6, 8, 9 | vcz 30522 | . . 3 ⊢ (((1st ‘𝑈) ∈ CVecOLD ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
| 11 | 2, 10 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆(GId‘( +𝑣 ‘𝑈))) = (GId‘( +𝑣 ‘𝑈))) |
| 12 | nvsz.6 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
| 13 | 3, 12 | 0vfval 30553 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 15 | 14 | oveq2d 7429 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = (𝐴𝑆(GId‘( +𝑣 ‘𝑈)))) |
| 16 | 11, 15, 14 | 3eqtr4d 2779 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ ℂ) → (𝐴𝑆𝑍) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6541 (class class class)co 7413 1st c1st 7994 ℂcc 11135 GIdcgi 30437 CVecOLDcvc 30505 NrmCVeccnv 30531 +𝑣 cpv 30532 BaseSetcba 30533 ·𝑠OLD cns 30534 0veccn0v 30535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-1st 7996 df-2nd 7997 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-grpo 30440 df-gid 30441 df-ginv 30442 df-ablo 30492 df-vc 30506 df-nv 30539 df-va 30542 df-ba 30543 df-sm 30544 df-0v 30545 df-nmcv 30547 |
| This theorem is referenced by: nvmul0or 30597 nvnd 30635 dip0r 30664 0lno 30737 |
| Copyright terms: Public domain | W3C validator |