![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvrinv | Structured version Visualization version GIF version |
Description: A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvrinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
nvrinv.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvrinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvrinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
2 | 1 | nvgrp 30651 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
3 | nvrinv.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
4 | 3, 1 | bafval 30638 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
5 | eqid 2740 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
6 | eqid 2740 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
7 | 4, 5, 6 | grporinv 30561 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺)) |
8 | 2, 7 | sylan 579 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺)) |
9 | nvrinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
10 | 3, 1, 9, 6 | nvinv 30673 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴)) |
11 | 10 | oveq2d 7466 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
12 | nvrinv.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
13 | 1, 12 | 0vfval 30640 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘𝐺)) |
15 | 8, 11, 14 | 3eqtr4d 2790 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 1c1 11187 -cneg 11523 GrpOpcgr 30523 GIdcgi 30524 invcgn 30525 NrmCVeccnv 30618 +𝑣 cpv 30619 BaseSetcba 30620 ·𝑠OLD cns 30621 0veccn0v 30622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-ltxr 11331 df-sub 11524 df-neg 11525 df-grpo 30527 df-gid 30528 df-ginv 30529 df-ablo 30579 df-vc 30593 df-nv 30626 df-va 30629 df-ba 30630 df-sm 30631 df-0v 30632 df-nmcv 30634 |
This theorem is referenced by: nvpncan2 30687 ipidsq 30744 ip2i 30862 ipdirilem 30863 ipasslem2 30866 |
Copyright terms: Public domain | W3C validator |