MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrinv Structured version   Visualization version   GIF version

Theorem nvrinv 28914
Description: A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvrinv.1 𝑋 = (BaseSet‘𝑈)
nvrinv.2 𝐺 = ( +𝑣𝑈)
nvrinv.4 𝑆 = ( ·𝑠OLD𝑈)
nvrinv.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvrinv ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍)

Proof of Theorem nvrinv
StepHypRef Expression
1 nvrinv.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28880 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvrinv.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28867 . . . 4 𝑋 = ran 𝐺
5 eqid 2738 . . . 4 (GId‘𝐺) = (GId‘𝐺)
6 eqid 2738 . . . 4 (inv‘𝐺) = (inv‘𝐺)
74, 5, 6grporinv 28790 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺))
82, 7sylan 579 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺))
9 nvrinv.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
103, 1, 9, 6nvinv 28902 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴))
1110oveq2d 7271 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (𝐴𝐺((inv‘𝐺)‘𝐴)))
12 nvrinv.6 . . . 4 𝑍 = (0vec𝑈)
131, 120vfval 28869 . . 3 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1413adantr 480 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍 = (GId‘𝐺))
158, 11, 143eqtr4d 2788 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  1c1 10803  -cneg 11136  GrpOpcgr 28752  GIdcgi 28753  invcgn 28754  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849   ·𝑠OLD cns 28850  0veccn0v 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-sub 11137  df-neg 11138  df-grpo 28756  df-gid 28757  df-ginv 28758  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863
This theorem is referenced by:  nvpncan2  28916  ipidsq  28973  ip2i  29091  ipdirilem  29092  ipasslem2  29095
  Copyright terms: Public domain W3C validator