MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvrinv Structured version   Visualization version   GIF version

Theorem nvrinv 28599
Description: A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvrinv.1 𝑋 = (BaseSet‘𝑈)
nvrinv.2 𝐺 = ( +𝑣𝑈)
nvrinv.4 𝑆 = ( ·𝑠OLD𝑈)
nvrinv.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvrinv ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍)

Proof of Theorem nvrinv
StepHypRef Expression
1 nvrinv.2 . . . 4 𝐺 = ( +𝑣𝑈)
21nvgrp 28565 . . 3 (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp)
3 nvrinv.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
43, 1bafval 28552 . . . 4 𝑋 = ran 𝐺
5 eqid 2739 . . . 4 (GId‘𝐺) = (GId‘𝐺)
6 eqid 2739 . . . 4 (inv‘𝐺) = (inv‘𝐺)
74, 5, 6grporinv 28475 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺))
82, 7sylan 583 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺))
9 nvrinv.4 . . . 4 𝑆 = ( ·𝑠OLD𝑈)
103, 1, 9, 6nvinv 28587 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴))
1110oveq2d 7199 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (𝐴𝐺((inv‘𝐺)‘𝐴)))
12 nvrinv.6 . . . 4 𝑍 = (0vec𝑈)
131, 120vfval 28554 . . 3 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺))
1413adantr 484 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍 = (GId‘𝐺))
158, 11, 143eqtr4d 2784 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  cfv 6350  (class class class)co 7183  1c1 10629  -cneg 10962  GrpOpcgr 28437  GIdcgi 28438  invcgn 28439  NrmCVeccnv 28532   +𝑣 cpv 28533  BaseSetcba 28534   ·𝑠OLD cns 28535  0veccn0v 28536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-po 5452  df-so 5453  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-1st 7727  df-2nd 7728  df-er 8333  df-en 8569  df-dom 8570  df-sdom 8571  df-pnf 10768  df-mnf 10769  df-ltxr 10771  df-sub 10963  df-neg 10964  df-grpo 28441  df-gid 28442  df-ginv 28443  df-ablo 28493  df-vc 28507  df-nv 28540  df-va 28543  df-ba 28544  df-sm 28545  df-0v 28546  df-nmcv 28548
This theorem is referenced by:  nvpncan2  28601  ipidsq  28658  ip2i  28776  ipdirilem  28777  ipasslem2  28780
  Copyright terms: Public domain W3C validator