| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvrinv | Structured version Visualization version GIF version | ||
| Description: A vector minus itself. (Contributed by NM, 4-Dec-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvrinv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvrinv.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| nvrinv.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| nvrinv.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvrinv | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvrinv.2 | . . . 4 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 2 | 1 | nvgrp 30552 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐺 ∈ GrpOp) |
| 3 | nvrinv.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 4 | 3, 1 | bafval 30539 | . . . 4 ⊢ 𝑋 = ran 𝐺 |
| 5 | eqid 2730 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 6 | eqid 2730 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 7 | 4, 5, 6 | grporinv 30462 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺)) |
| 8 | 2, 7 | sylan 580 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = (GId‘𝐺)) |
| 9 | nvrinv.4 | . . . 4 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 10 | 3, 1, 9, 6 | nvinv 30574 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (-1𝑆𝐴) = ((inv‘𝐺)‘𝐴)) |
| 11 | 10 | oveq2d 7405 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
| 12 | nvrinv.6 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 13 | 1, 12 | 0vfval 30541 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘𝐺)) |
| 14 | 13 | adantr 480 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 = (GId‘𝐺)) |
| 15 | 8, 11, 14 | 3eqtr4d 2775 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(-1𝑆𝐴)) = 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 1c1 11075 -cneg 11412 GrpOpcgr 30424 GIdcgi 30425 invcgn 30426 NrmCVeccnv 30519 +𝑣 cpv 30520 BaseSetcba 30521 ·𝑠OLD cns 30522 0veccn0v 30523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-1st 7970 df-2nd 7971 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-ltxr 11219 df-sub 11413 df-neg 11414 df-grpo 30428 df-gid 30429 df-ginv 30430 df-ablo 30480 df-vc 30494 df-nv 30527 df-va 30530 df-ba 30531 df-sm 30532 df-0v 30533 df-nmcv 30535 |
| This theorem is referenced by: nvpncan2 30588 ipidsq 30645 ip2i 30763 ipdirilem 30764 ipasslem2 30767 |
| Copyright terms: Public domain | W3C validator |