| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankr1ag | Structured version Visualization version GIF version | ||
| Description: A version of rankr1a 9729 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankr1ag | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ai 9691 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | |
| 2 | r1funlim 9659 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 3 | 2 | simpri 485 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
| 4 | limord 6367 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Ord dom 𝑅1 |
| 6 | ordelord 6328 | . . . . . 6 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) | |
| 7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → Ord 𝐵) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) |
| 9 | ordsucss 7748 | . . . 4 ⊢ (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) |
| 11 | rankidb 9693 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
| 12 | elfvdm 6856 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
| 14 | r1ord3g 9672 | . . . 4 ⊢ ((suc (rank‘𝐴) ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) | |
| 15 | 13, 14 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) |
| 16 | 11 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
| 17 | ssel 3923 | . . . 4 ⊢ ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘𝐵))) | |
| 18 | 16, 17 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘𝐵))) |
| 19 | 10, 15, 18 | 3syld 60 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → 𝐴 ∈ (𝑅1‘𝐵))) |
| 20 | 1, 19 | impbid2 226 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ⊆ wss 3897 ∪ cuni 4856 dom cdm 5614 “ cima 5617 Ord word 6305 Oncon0 6306 Lim wlim 6307 suc csuc 6308 Fun wfun 6475 ‘cfv 6481 𝑅1cr1 9655 rankcrnk 9656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-r1 9657 df-rank 9658 |
| This theorem is referenced by: rankr1bg 9696 rankr1clem 9713 rankr1c 9714 rankval3b 9719 onssr1 9724 r1pw 9738 r1pwcl 9740 hsmexlem6 10322 r1limwun 10627 inatsk 10669 grur1 10711 r1elcl 35109 |
| Copyright terms: Public domain | W3C validator |