Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rankr1ag | Structured version Visualization version GIF version |
Description: A version of rankr1a 9452 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1ag | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1ai 9414 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | |
2 | r1funlim 9382 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
3 | 2 | simpri 489 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
4 | limord 6272 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Ord dom 𝑅1 |
6 | ordelord 6235 | . . . . . 6 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) | |
7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → Ord 𝐵) |
8 | 7 | adantl 485 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) |
9 | ordsucss 7597 | . . . 4 ⊢ (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) |
11 | rankidb 9416 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
12 | elfvdm 6749 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
14 | r1ord3g 9395 | . . . 4 ⊢ ((suc (rank‘𝐴) ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) | |
15 | 13, 14 | sylan 583 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) |
16 | 11 | adantr 484 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
17 | ssel 3893 | . . . 4 ⊢ ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘𝐵))) | |
18 | 16, 17 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘𝐵))) |
19 | 10, 15, 18 | 3syld 60 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → 𝐴 ∈ (𝑅1‘𝐵))) |
20 | 1, 19 | impbid2 229 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2110 ⊆ wss 3866 ∪ cuni 4819 dom cdm 5551 “ cima 5554 Ord word 6212 Oncon0 6213 Lim wlim 6214 suc csuc 6215 Fun wfun 6374 ‘cfv 6380 𝑅1cr1 9378 rankcrnk 9379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-r1 9380 df-rank 9381 |
This theorem is referenced by: rankr1bg 9419 rankr1clem 9436 rankr1c 9437 rankval3b 9442 onssr1 9447 r1pw 9461 r1pwcl 9463 hsmexlem6 10045 r1limwun 10350 inatsk 10392 grur1 10434 |
Copyright terms: Public domain | W3C validator |