MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ag Structured version   Visualization version   GIF version

Theorem rankr1ag 9762
Description: A version of rankr1a 9796 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ag ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))

Proof of Theorem rankr1ag
StepHypRef Expression
1 rankr1ai 9758 . 2 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
2 r1funlim 9726 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . . 7 Lim dom 𝑅1
4 limord 6396 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordelord 6357 . . . . . 6 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → Ord 𝐵)
75, 6mpan 690 . . . . 5 (𝐵 ∈ dom 𝑅1 → Ord 𝐵)
87adantl 481 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵)
9 ordsucss 7796 . . . 4 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
108, 9syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
11 rankidb 9760 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 elfvdm 6898 . . . . 5 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
1311, 12syl 17 . . . 4 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
14 r1ord3g 9739 . . . 4 ((suc (rank‘𝐴) ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1513, 14sylan 580 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1611adantr 480 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
17 ssel 3943 . . . 4 ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1𝐵)))
1816, 17syl5com 31 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → 𝐴 ∈ (𝑅1𝐵)))
1910, 15, 183syld 60 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵𝐴 ∈ (𝑅1𝐵)))
201, 19impbid2 226 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3917   cuni 4874  dom cdm 5641  cima 5644  Ord word 6334  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508  cfv 6514  𝑅1cr1 9722  rankcrnk 9723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-r1 9724  df-rank 9725
This theorem is referenced by:  rankr1bg  9763  rankr1clem  9780  rankr1c  9781  rankval3b  9786  onssr1  9791  r1pw  9805  r1pwcl  9807  hsmexlem6  10391  r1limwun  10696  inatsk  10738  grur1  10780
  Copyright terms: Public domain W3C validator