![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rankr1ag | Structured version Visualization version GIF version |
Description: A version of rankr1a 9828 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
rankr1ag | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankr1ai 9790 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | |
2 | r1funlim 9758 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
3 | 2 | simpri 487 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
4 | limord 6422 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Ord dom 𝑅1 |
6 | ordelord 6384 | . . . . . 6 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) | |
7 | 5, 6 | mpan 689 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → Ord 𝐵) |
8 | 7 | adantl 483 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) |
9 | ordsucss 7803 | . . . 4 ⊢ (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) |
11 | rankidb 9792 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
12 | elfvdm 6926 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
14 | r1ord3g 9771 | . . . 4 ⊢ ((suc (rank‘𝐴) ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) | |
15 | 13, 14 | sylan 581 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) |
16 | 11 | adantr 482 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
17 | ssel 3975 | . . . 4 ⊢ ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘𝐵))) | |
18 | 16, 17 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘𝐵))) |
19 | 10, 15, 18 | 3syld 60 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → 𝐴 ∈ (𝑅1‘𝐵))) |
20 | 1, 19 | impbid2 225 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3948 ∪ cuni 4908 dom cdm 5676 “ cima 5679 Ord word 6361 Oncon0 6362 Lim wlim 6363 suc csuc 6364 Fun wfun 6535 ‘cfv 6541 𝑅1cr1 9754 rankcrnk 9755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7409 df-om 7853 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-r1 9756 df-rank 9757 |
This theorem is referenced by: rankr1bg 9795 rankr1clem 9812 rankr1c 9813 rankval3b 9818 onssr1 9823 r1pw 9837 r1pwcl 9839 hsmexlem6 10423 r1limwun 10728 inatsk 10770 grur1 10812 |
Copyright terms: Public domain | W3C validator |