| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rankr1ag | Structured version Visualization version GIF version | ||
| Description: A version of rankr1a 9732 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| rankr1ag | ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankr1ai 9694 | . 2 ⊢ (𝐴 ∈ (𝑅1‘𝐵) → (rank‘𝐴) ∈ 𝐵) | |
| 2 | r1funlim 9662 | . . . . . . . 8 ⊢ (Fun 𝑅1 ∧ Lim dom 𝑅1) | |
| 3 | 2 | simpri 485 | . . . . . . 7 ⊢ Lim dom 𝑅1 |
| 4 | limord 6368 | . . . . . . 7 ⊢ (Lim dom 𝑅1 → Ord dom 𝑅1) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ Ord dom 𝑅1 |
| 6 | ordelord 6329 | . . . . . 6 ⊢ ((Ord dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) | |
| 7 | 5, 6 | mpan 690 | . . . . 5 ⊢ (𝐵 ∈ dom 𝑅1 → Ord 𝐵) |
| 8 | 7 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵) |
| 9 | ordsucss 7751 | . . . 4 ⊢ (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵)) |
| 11 | rankidb 9696 | . . . . 5 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) | |
| 12 | elfvdm 6857 | . . . . 5 ⊢ (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1) | |
| 13 | 11, 12 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1) |
| 14 | r1ord3g 9675 | . . . 4 ⊢ ((suc (rank‘𝐴) ∈ dom 𝑅1 ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) | |
| 15 | 13, 14 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵))) |
| 16 | 11 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) |
| 17 | ssel 3929 | . . . 4 ⊢ ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1‘𝐵))) | |
| 18 | 16, 17 | syl5com 31 | . . 3 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1‘𝐵) → 𝐴 ∈ (𝑅1‘𝐵))) |
| 19 | 10, 15, 18 | 3syld 60 | . 2 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → 𝐴 ∈ (𝑅1‘𝐵))) |
| 20 | 1, 19 | impbid2 226 | 1 ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1‘𝐵) ↔ (rank‘𝐴) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3903 ∪ cuni 4858 dom cdm 5619 “ cima 5622 Ord word 6306 Oncon0 6307 Lim wlim 6308 suc csuc 6309 Fun wfun 6476 ‘cfv 6482 𝑅1cr1 9658 rankcrnk 9659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-r1 9660 df-rank 9661 |
| This theorem is referenced by: rankr1bg 9699 rankr1clem 9716 rankr1c 9717 rankval3b 9722 onssr1 9727 r1pw 9741 r1pwcl 9743 hsmexlem6 10325 r1limwun 10630 inatsk 10672 grur1 10714 |
| Copyright terms: Public domain | W3C validator |