MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ag Structured version   Visualization version   GIF version

Theorem rankr1ag 9731
Description: A version of rankr1a 9765 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ag ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))

Proof of Theorem rankr1ag
StepHypRef Expression
1 rankr1ai 9727 . 2 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
2 r1funlim 9695 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 485 . . . . . . 7 Lim dom 𝑅1
4 limord 6381 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordelord 6342 . . . . . 6 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → Ord 𝐵)
75, 6mpan 690 . . . . 5 (𝐵 ∈ dom 𝑅1 → Ord 𝐵)
87adantl 481 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵)
9 ordsucss 7773 . . . 4 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
108, 9syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
11 rankidb 9729 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 elfvdm 6877 . . . . 5 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
1311, 12syl 17 . . . 4 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
14 r1ord3g 9708 . . . 4 ((suc (rank‘𝐴) ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1513, 14sylan 580 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1611adantr 480 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
17 ssel 3937 . . . 4 ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1𝐵)))
1816, 17syl5com 31 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → 𝐴 ∈ (𝑅1𝐵)))
1910, 15, 183syld 60 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵𝐴 ∈ (𝑅1𝐵)))
201, 19impbid2 226 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wss 3911   cuni 4867  dom cdm 5631  cima 5634  Ord word 6319  Oncon0 6320  Lim wlim 6321  suc csuc 6322  Fun wfun 6493  cfv 6499  𝑅1cr1 9691  rankcrnk 9692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-r1 9693  df-rank 9694
This theorem is referenced by:  rankr1bg  9732  rankr1clem  9749  rankr1c  9750  rankval3b  9755  onssr1  9760  r1pw  9774  r1pwcl  9776  hsmexlem6  10360  r1limwun  10665  inatsk  10707  grur1  10749
  Copyright terms: Public domain W3C validator