Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankr1ag Structured version   Visualization version   GIF version

Theorem rankr1ag 9218
 Description: A version of rankr1a 9252 that is suitable without assuming Regularity or Replacement. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
rankr1ag ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))

Proof of Theorem rankr1ag
StepHypRef Expression
1 rankr1ai 9214 . 2 (𝐴 ∈ (𝑅1𝐵) → (rank‘𝐴) ∈ 𝐵)
2 r1funlim 9182 . . . . . . . 8 (Fun 𝑅1 ∧ Lim dom 𝑅1)
32simpri 489 . . . . . . 7 Lim dom 𝑅1
4 limord 6219 . . . . . . 7 (Lim dom 𝑅1 → Ord dom 𝑅1)
53, 4ax-mp 5 . . . . . 6 Ord dom 𝑅1
6 ordelord 6182 . . . . . 6 ((Ord dom 𝑅1𝐵 ∈ dom 𝑅1) → Ord 𝐵)
75, 6mpan 689 . . . . 5 (𝐵 ∈ dom 𝑅1 → Ord 𝐵)
87adantl 485 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → Ord 𝐵)
9 ordsucss 7516 . . . 4 (Ord 𝐵 → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
108, 9syl 17 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵 → suc (rank‘𝐴) ⊆ 𝐵))
11 rankidb 9216 . . . . 5 (𝐴 (𝑅1 “ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
12 elfvdm 6678 . . . . 5 (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → suc (rank‘𝐴) ∈ dom 𝑅1)
1311, 12syl 17 . . . 4 (𝐴 (𝑅1 “ On) → suc (rank‘𝐴) ∈ dom 𝑅1)
14 r1ord3g 9195 . . . 4 ((suc (rank‘𝐴) ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1513, 14sylan 583 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (suc (rank‘𝐴) ⊆ 𝐵 → (𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵)))
1611adantr 484 . . . 4 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
17 ssel 3908 . . . 4 ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → (𝐴 ∈ (𝑅1‘suc (rank‘𝐴)) → 𝐴 ∈ (𝑅1𝐵)))
1816, 17syl5com 31 . . 3 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((𝑅1‘suc (rank‘𝐴)) ⊆ (𝑅1𝐵) → 𝐴 ∈ (𝑅1𝐵)))
1910, 15, 183syld 60 . 2 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → ((rank‘𝐴) ∈ 𝐵𝐴 ∈ (𝑅1𝐵)))
201, 19impbid2 229 1 ((𝐴 (𝑅1 “ On) ∧ 𝐵 ∈ dom 𝑅1) → (𝐴 ∈ (𝑅1𝐵) ↔ (rank‘𝐴) ∈ 𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∈ wcel 2111   ⊆ wss 3881  ∪ cuni 4801  dom cdm 5520   “ cima 5523  Ord word 6159  Oncon0 6160  Lim wlim 6161  suc csuc 6162  Fun wfun 6319  ‘cfv 6325  𝑅1cr1 9178  rankcrnk 9179 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-om 7564  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-r1 9180  df-rank 9181 This theorem is referenced by:  rankr1bg  9219  rankr1clem  9236  rankr1c  9237  rankval3b  9242  onssr1  9247  r1pw  9261  r1pwcl  9263  hsmexlem6  9845  r1limwun  10150  inatsk  10192  grur1  10234
 Copyright terms: Public domain W3C validator