MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqvlem Structured version   Visualization version   GIF version

Theorem fineqvlem 9298
Description: Lemma for fineqv 9299. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fineqvlem ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)

Proof of Theorem fineqvlem
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5378 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
32pwexd 5379 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫 𝐴 ∈ V)
4 ssrab2 4080 . . . . 5 {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴
5 elpw2g 5333 . . . . . 6 (𝒫 𝐴 ∈ V → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
62, 5syl 17 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
74, 6mpbiri 258 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴)
87a1d 25 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴))
9 isinf 9296 . . . . . . . . 9 𝐴 ∈ Fin → ∀𝑏 ∈ ω ∃𝑒(𝑒𝐴𝑒𝑏))
109r19.21bi 3251 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω) → ∃𝑒(𝑒𝐴𝑒𝑏))
1110ad2ant2lr 748 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒𝐴𝑒𝑏))
12 velpw 4605 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝐴𝑒𝐴)
1312biimpri 228 . . . . . . . . . 10 (𝑒𝐴𝑒 ∈ 𝒫 𝐴)
1413anim1i 615 . . . . . . . . 9 ((𝑒𝐴𝑒𝑏) → (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
15 breq1 5146 . . . . . . . . . 10 (𝑑 = 𝑒 → (𝑑𝑏𝑒𝑏))
1615elrab 3692 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
1714, 16sylibr 234 . . . . . . . 8 ((𝑒𝐴𝑒𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1817eximi 1835 . . . . . . 7 (∃𝑒(𝑒𝐴𝑒𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1911, 18syl 17 . . . . . 6 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
20 eleq2 2830 . . . . . . . . 9 ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2120biimpcd 249 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2221adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2316simprbi 496 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → 𝑒𝑏)
24 breq1 5146 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (𝑑𝑐𝑒𝑐))
2524elrab 3692 . . . . . . . . . . 11 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑐))
2625simprbi 496 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒𝑐)
27 ensym 9043 . . . . . . . . . . 11 (𝑒𝑏𝑏𝑒)
28 entr 9046 . . . . . . . . . . 11 ((𝑏𝑒𝑒𝑐) → 𝑏𝑐)
2927, 28sylan 580 . . . . . . . . . 10 ((𝑒𝑏𝑒𝑐) → 𝑏𝑐)
3023, 26, 29syl2an 596 . . . . . . . . 9 ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}) → 𝑏𝑐)
3130ex 412 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
3231adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
33 nneneq 9246 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3433biimpd 229 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3534ad2antlr 727 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑏𝑐𝑏 = 𝑐))
3622, 32, 353syld 60 . . . . . 6 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
3719, 36exlimddv 1935 . . . . 5 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
38 breq2 5147 . . . . . 6 (𝑏 = 𝑐 → (𝑑𝑏𝑑𝑐))
3938rabbidv 3444 . . . . 5 (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐})
4037, 39impbid1 225 . . . 4 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐))
4140ex 412 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐)))
428, 41dom2d 9033 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴))
433, 42mpd 15 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {crab 3436  Vcvv 3480  wss 3951  𝒫 cpw 4600   class class class wbr 5143  ωcom 7887  cen 8982  cdom 8983  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-om 7888  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-fin 8989
This theorem is referenced by:  fineqv  9299  isfin1-2  10425
  Copyright terms: Public domain W3C validator