MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fineqvlem Structured version   Visualization version   GIF version

Theorem fineqvlem 9155
Description: Lemma for fineqv 9156. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fineqvlem ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)

Proof of Theorem fineqvlem
Dummy variables 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 5317 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
21adantr 480 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V)
32pwexd 5318 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫 𝐴 ∈ V)
4 ssrab2 4031 . . . . 5 {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴
5 elpw2g 5272 . . . . . 6 (𝒫 𝐴 ∈ V → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
62, 5syl 17 . . . . 5 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ⊆ 𝒫 𝐴))
74, 6mpbiri 258 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴)
87a1d 25 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∈ 𝒫 𝒫 𝐴))
9 isinf 9154 . . . . . . . . 9 𝐴 ∈ Fin → ∀𝑏 ∈ ω ∃𝑒(𝑒𝐴𝑒𝑏))
109r19.21bi 3221 . . . . . . . 8 ((¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω) → ∃𝑒(𝑒𝐴𝑒𝑏))
1110ad2ant2lr 748 . . . . . . 7 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒𝐴𝑒𝑏))
12 velpw 4556 . . . . . . . . . . 11 (𝑒 ∈ 𝒫 𝐴𝑒𝐴)
1312biimpri 228 . . . . . . . . . 10 (𝑒𝐴𝑒 ∈ 𝒫 𝐴)
1413anim1i 615 . . . . . . . . 9 ((𝑒𝐴𝑒𝑏) → (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
15 breq1 5095 . . . . . . . . . 10 (𝑑 = 𝑒 → (𝑑𝑏𝑒𝑏))
1615elrab 3648 . . . . . . . . 9 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑏))
1714, 16sylibr 234 . . . . . . . 8 ((𝑒𝐴𝑒𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1817eximi 1835 . . . . . . 7 (∃𝑒(𝑒𝐴𝑒𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
1911, 18syl 17 . . . . . 6 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏})
20 eleq2 2817 . . . . . . . . 9 ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2120biimpcd 249 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2221adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}))
2316simprbi 496 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → 𝑒𝑏)
24 breq1 5095 . . . . . . . . . . . 12 (𝑑 = 𝑒 → (𝑑𝑐𝑒𝑐))
2524elrab 3648 . . . . . . . . . . 11 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ (𝑒 ∈ 𝒫 𝐴𝑒𝑐))
2625simprbi 496 . . . . . . . . . 10 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑒𝑐)
27 ensym 8928 . . . . . . . . . . 11 (𝑒𝑏𝑏𝑒)
28 entr 8931 . . . . . . . . . . 11 ((𝑏𝑒𝑒𝑐) → 𝑏𝑐)
2927, 28sylan 580 . . . . . . . . . 10 ((𝑒𝑏𝑒𝑐) → 𝑏𝑐)
3023, 26, 29syl2an 596 . . . . . . . . 9 ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐}) → 𝑏𝑐)
3130ex 412 . . . . . . . 8 (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
3231adantl 481 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏𝑐))
33 nneneq 9120 . . . . . . . . 9 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3433biimpd 229 . . . . . . . 8 ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏𝑐𝑏 = 𝑐))
3534ad2antlr 727 . . . . . . 7 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → (𝑏𝑐𝑏 = 𝑐))
3622, 32, 353syld 60 . . . . . 6 ((((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴𝑑𝑏}) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
3719, 36exlimddv 1935 . . . . 5 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} → 𝑏 = 𝑐))
38 breq2 5096 . . . . . 6 (𝑏 = 𝑐 → (𝑑𝑏𝑑𝑐))
3938rabbidv 3402 . . . . 5 (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐})
4037, 39impbid1 225 . . . 4 (((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐))
4140ex 412 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴𝑑𝑏} = {𝑑 ∈ 𝒫 𝐴𝑑𝑐} ↔ 𝑏 = 𝑐)))
428, 41dom2d 8918 . 2 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴))
433, 42mpd 15 1 ((𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  {crab 3394  Vcvv 3436  wss 3903  𝒫 cpw 4551   class class class wbr 5092  ωcom 7799  cen 8869  cdom 8870  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-om 7800  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-fin 8876
This theorem is referenced by:  fineqv  9156  isfin1-2  10279
  Copyright terms: Public domain W3C validator