Step | Hyp | Ref
| Expression |
1 | | pwexg 5301 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
2 | 1 | adantr 481 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝐴 ∈ V) |
3 | 2 | pwexd 5302 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → 𝒫 𝒫
𝐴 ∈
V) |
4 | | ssrab2 4013 |
. . . . 5
⊢ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴 |
5 | | elpw2g 5268 |
. . . . . 6
⊢
(𝒫 𝐴 ∈
V → ({𝑑 ∈
𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
6 | 2, 5 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴 ↔ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ⊆ 𝒫 𝐴)) |
7 | 4, 6 | mpbiri 257 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴) |
8 | 7 | a1d 25 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝑏 ∈ ω → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∈ 𝒫 𝒫 𝐴)) |
9 | | isinf 9036 |
. . . . . . . . 9
⊢ (¬
𝐴 ∈ Fin →
∀𝑏 ∈ ω
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
10 | 9 | r19.21bi 3134 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ Fin ∧ 𝑏 ∈ ω) →
∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
11 | 10 | ad2ant2lr 745 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏)) |
12 | | velpw 4538 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ 𝒫 𝐴 ↔ 𝑒 ⊆ 𝐴) |
13 | 12 | biimpri 227 |
. . . . . . . . . 10
⊢ (𝑒 ⊆ 𝐴 → 𝑒 ∈ 𝒫 𝐴) |
14 | 13 | anim1i 615 |
. . . . . . . . 9
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
15 | | breq1 5077 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑏 ↔ 𝑒 ≈ 𝑏)) |
16 | 15 | elrab 3624 |
. . . . . . . . 9
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏)) |
17 | 14, 16 | sylibr 233 |
. . . . . . . 8
⊢ ((𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
18 | 17 | eximi 1837 |
. . . . . . 7
⊢
(∃𝑒(𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
19 | 11, 18 | syl 17 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ∃𝑒 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) |
20 | | eleq2 2827 |
. . . . . . . . 9
⊢ ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ↔ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
21 | 20 | biimpcd 248 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
22 | 21 | adantl 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐})) |
23 | 16 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → 𝑒 ≈ 𝑏) |
24 | | breq1 5077 |
. . . . . . . . . . . 12
⊢ (𝑑 = 𝑒 → (𝑑 ≈ 𝑐 ↔ 𝑒 ≈ 𝑐)) |
25 | 24 | elrab 3624 |
. . . . . . . . . . 11
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ (𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑐)) |
26 | 25 | simprbi 497 |
. . . . . . . . . 10
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑒 ≈ 𝑐) |
27 | | ensym 8789 |
. . . . . . . . . . 11
⊢ (𝑒 ≈ 𝑏 → 𝑏 ≈ 𝑒) |
28 | | entr 8792 |
. . . . . . . . . . 11
⊢ ((𝑏 ≈ 𝑒 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
29 | 27, 28 | sylan 580 |
. . . . . . . . . 10
⊢ ((𝑒 ≈ 𝑏 ∧ 𝑒 ≈ 𝑐) → 𝑏 ≈ 𝑐) |
30 | 23, 26, 29 | syl2an 596 |
. . . . . . . . 9
⊢ ((𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) → 𝑏 ≈ 𝑐) |
31 | 30 | ex 413 |
. . . . . . . 8
⊢ (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
32 | 31 | adantl 482 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 ≈ 𝑐)) |
33 | | nneneq 8992 |
. . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 ↔ 𝑏 = 𝑐)) |
34 | 33 | biimpd 228 |
. . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
35 | 34 | ad2antlr 724 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → (𝑏 ≈ 𝑐 → 𝑏 = 𝑐)) |
36 | 22, 32, 35 | 3syld 60 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) ∧ 𝑒 ∈ {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏}) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
37 | 19, 36 | exlimddv 1938 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} → 𝑏 = 𝑐)) |
38 | | breq2 5078 |
. . . . . 6
⊢ (𝑏 = 𝑐 → (𝑑 ≈ 𝑏 ↔ 𝑑 ≈ 𝑐)) |
39 | 38 | rabbidv 3414 |
. . . . 5
⊢ (𝑏 = 𝑐 → {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐}) |
40 | 37, 39 | impbid1 224 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) ∧ (𝑏 ∈ ω ∧ 𝑐 ∈ ω)) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐)) |
41 | 40 | ex 413 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ((𝑏 ∈ ω ∧ 𝑐 ∈ ω) → ({𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏} = {𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐} ↔ 𝑏 = 𝑐))) |
42 | 8, 41 | dom2d 8781 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → (𝒫 𝒫
𝐴 ∈ V → ω
≼ 𝒫 𝒫 𝐴)) |
43 | 3, 42 | mpd 15 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼
𝒫 𝒫 𝐴) |