Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bfplem2 Structured version   Visualization version   GIF version

Theorem bfplem2 35908
Description: Lemma for bfp 35909. Using the point found in bfplem1 35907, we show that this convergent point is a fixed point of 𝐹. Since for any positive 𝑥, the sequence 𝐺 is in 𝐵(𝑥 / 2, 𝑃) for all 𝑘 ∈ (ℤ𝑗) (where 𝑃 = ((⇝𝑡𝐽)‘𝐺)), we have 𝐷(𝐺(𝑗 + 1), 𝐹(𝑃)) ≤ 𝐷(𝐺(𝑗), 𝑃) < 𝑥 / 2 and 𝐷(𝐺(𝑗 + 1), 𝑃) < 𝑥 / 2, so 𝐹(𝑃) is in every neighborhood of 𝑃 and 𝑃 is a fixed point of 𝐹. (Contributed by Jeff Madsen, 5-Jun-2014.)
Hypotheses
Ref Expression
bfp.2 (𝜑𝐷 ∈ (CMet‘𝑋))
bfp.3 (𝜑𝑋 ≠ ∅)
bfp.4 (𝜑𝐾 ∈ ℝ+)
bfp.5 (𝜑𝐾 < 1)
bfp.6 (𝜑𝐹:𝑋𝑋)
bfp.7 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
bfp.8 𝐽 = (MetOpen‘𝐷)
bfp.9 (𝜑𝐴𝑋)
bfp.10 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
Assertion
Ref Expression
bfplem2 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐷   𝑥,𝐺,𝑦,𝑧   𝑥,𝐽,𝑦,𝑧   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦,𝑧   𝑥,𝐾,𝑦   𝑥,𝑋,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦,𝑧)   𝐾(𝑧)

Proof of Theorem bfplem2
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bfp.2 . . . . 5 (𝜑𝐷 ∈ (CMet‘𝑋))
2 cmetmet 24355 . . . . 5 (𝐷 ∈ (CMet‘𝑋) → 𝐷 ∈ (Met‘𝑋))
31, 2syl 17 . . . 4 (𝜑𝐷 ∈ (Met‘𝑋))
4 metxmet 23395 . . . 4 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
5 bfp.8 . . . . 5 𝐽 = (MetOpen‘𝐷)
65mopntopon 23500 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
73, 4, 63syl 18 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
8 bfp.3 . . . 4 (𝜑𝑋 ≠ ∅)
9 bfp.4 . . . 4 (𝜑𝐾 ∈ ℝ+)
10 bfp.5 . . . 4 (𝜑𝐾 < 1)
11 bfp.6 . . . 4 (𝜑𝐹:𝑋𝑋)
12 bfp.7 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
13 bfp.9 . . . 4 (𝜑𝐴𝑋)
14 bfp.10 . . . 4 𝐺 = seq1((𝐹 ∘ 1st ), (ℕ × {𝐴}))
151, 8, 9, 10, 11, 12, 5, 13, 14bfplem1 35907 . . 3 (𝜑𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
16 lmcl 22356 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺)) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
177, 15, 16syl2anc 583 . 2 (𝜑 → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
183adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋))
1918, 4syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐷 ∈ (∞Met‘𝑋))
20 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
21 1zzd 12281 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 1 ∈ ℤ)
22 eqidd 2739 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑘 ∈ ℕ) → (𝐺𝑘) = (𝐺𝑘))
2315adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐺(⇝𝑡𝐽)((⇝𝑡𝐽)‘𝐺))
24 rphalfcl 12686 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 / 2) ∈ ℝ+)
2524adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → (𝑥 / 2) ∈ ℝ+)
265, 19, 20, 21, 22, 23, 25lmmcvg 24330 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → ∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
27 simpr 484 . . . . . . . . . . . 12 (((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
2827ralimi 3086 . . . . . . . . . . 11 (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))
29 nnz 12272 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℤ)
3029adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℤ)
31 uzid 12526 . . . . . . . . . . . . . 14 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
32 fveq2 6756 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑗 → (𝐺𝑘) = (𝐺𝑗))
3332oveq1d 7270 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑗 → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
3433breq1d 5080 . . . . . . . . . . . . . . 15 (𝑘 = 𝑗 → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3534rspcv 3547 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3630, 31, 353syl 18 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
3730, 31syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ (ℤ𝑗))
38 peano2uz 12570 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ𝑗) → (𝑗 + 1) ∈ (ℤ𝑗))
39 fveq2 6756 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑗 + 1) → (𝐺𝑘) = (𝐺‘(𝑗 + 1)))
4039oveq1d 7270 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑗 + 1) → ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)))
4140breq1d 5080 . . . . . . . . . . . . . . . 16 (𝑘 = (𝑗 + 1) → (((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4241rspcv 3547 . . . . . . . . . . . . . . 15 ((𝑗 + 1) ∈ (ℤ𝑗) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4337, 38, 423syl 18 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
44 1zzd 12281 . . . . . . . . . . . . . . . . . 18 (𝜑 → 1 ∈ ℤ)
4520, 14, 44, 13, 11algrp1 16207 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4645adantlr 711 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺‘(𝑗 + 1)) = (𝐹‘(𝐺𝑗)))
4746oveq1d 7270 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) = ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)))
4847breq1d 5080 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺‘(𝑗 + 1))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ↔ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
4943, 48sylibd 238 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)))
5036, 49jcad 512 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2))))
513ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐷 ∈ (Met‘𝑋))
5220, 14, 44, 13, 11algrf 16206 . . . . . . . . . . . . . . . 16 (𝜑𝐺:ℕ⟶𝑋)
5352adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ+) → 𝐺:ℕ⟶𝑋)
5453ffvelrnda 6943 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐺𝑗) ∈ 𝑋)
5517ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)
56 metcl 23393 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5751, 54, 55, 56syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
5811ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐹:𝑋𝑋)
5958, 54ffvelrnd 6944 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘(𝐺𝑗)) ∈ 𝑋)
60 metcl 23393 . . . . . . . . . . . . . 14 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6151, 59, 55, 60syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
62 rpre 12667 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
6362ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝑥 ∈ ℝ)
64 lt2halves 12138 . . . . . . . . . . . . 13 ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6557, 61, 63, 64syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) ∧ ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥))
6611, 17ffvelrnd 6944 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
67 metcl 23393 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
683, 66, 17, 67syl3anc 1369 . . . . . . . . . . . . . . 15 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
6968ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ)
7058, 55ffvelrnd 6944 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋)
71 metcl 23393 . . . . . . . . . . . . . . . 16 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7251, 59, 70, 71syl3anc 1369 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7372, 61readdcld 10935 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
7457, 61readdcld 10935 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
75 mettri2 23402 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (Met‘𝑋) ∧ ((𝐹‘(𝐺𝑗)) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
7651, 59, 70, 55, 75syl13anc 1370 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
779rpred 12701 . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ ℝ)
7877ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ∈ ℝ)
7978, 57remulcld 10936 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ)
8054, 55jca 511 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋))
8112ralrimivva 3114 . . . . . . . . . . . . . . . . . 18 (𝜑 → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
8281ad2antrr 722 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)))
83 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝐹𝑥) = (𝐹‘(𝐺𝑗)))
8483oveq1d 7270 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → ((𝐹𝑥)𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)))
85 oveq1 7262 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝐺𝑗) → (𝑥𝐷𝑦) = ((𝐺𝑗)𝐷𝑦))
8685oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (𝑥 = (𝐺𝑗) → (𝐾 · (𝑥𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷𝑦)))
8784, 86breq12d 5083 . . . . . . . . . . . . . . . . . 18 (𝑥 = (𝐺𝑗) → (((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦))))
88 fveq2 6756 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑦) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
8988oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) = ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))))
90 oveq2 7263 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → ((𝐺𝑗)𝐷𝑦) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9190oveq2d 7271 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (𝐾 · ((𝐺𝑗)𝐷𝑦)) = (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
9289, 91breq12d 5083 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((⇝𝑡𝐽)‘𝐺) → (((𝐹‘(𝐺𝑗))𝐷(𝐹𝑦)) ≤ (𝐾 · ((𝐺𝑗)𝐷𝑦)) ↔ ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9387, 92rspc2v 3562 . . . . . . . . . . . . . . . . 17 (((𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝐹𝑥)𝐷(𝐹𝑦)) ≤ (𝐾 · (𝑥𝐷𝑦)) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))))
9480, 82, 93sylc 65 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
95 1red 10907 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
96 metge0 23406 . . . . . . . . . . . . . . . . . . 19 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐺𝑗) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
9751, 54, 55, 96syl3anc 1369 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 0 ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
98 1re 10906 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
99 ltle 10994 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 1 ∈ ℝ) → (𝐾 < 1 → 𝐾 ≤ 1))
10077, 98, 99sylancl 585 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐾 < 1 → 𝐾 ≤ 1))
10110, 100mpd 15 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐾 ≤ 1)
102101ad2antrr 722 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → 𝐾 ≤ 1)
10378, 95, 57, 97, 102lemul1ad 11844 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))))
10457recnd 10934 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℂ)
105104mulid2d 10924 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (1 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) = ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
106103, 105breqtrd 5096 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (𝐾 · ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10772, 79, 57, 94, 106letrd 11062 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) ≤ ((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)))
10872, 57, 61, 107leadd1dd 11519 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (((𝐹‘(𝐺𝑗))𝐷(𝐹‘((⇝𝑡𝐽)‘𝐺))) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
10969, 73, 74, 76, 108letrd 11062 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))))
110 lelttr 10996 . . . . . . . . . . . . . 14 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11169, 74, 63, 110syl3anc 1369 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) ∧ (((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
112109, 111mpand 691 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → ((((𝐺𝑗)𝐷((⇝𝑡𝐽)‘𝐺)) + ((𝐹‘(𝐺𝑗))𝐷((⇝𝑡𝐽)‘𝐺))) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11350, 65, 1123syld 60 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11428, 113syl5 34 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑗 ∈ ℕ) → (∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
115114rexlimdva 3212 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (∃𝑗 ∈ ℕ ∀𝑘 ∈ (ℤ𝑗)((𝐺𝑘) ∈ 𝑋 ∧ ((𝐺𝑘)𝐷((⇝𝑡𝐽)‘𝐺)) < (𝑥 / 2)) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥))
11626, 115mpd 15 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥)
117 ltle 10994 . . . . . . . . 9 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
11868, 62, 117syl2an 595 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) < 𝑥 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥))
119116, 118mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 𝑥)
12062adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
121120recnd 10934 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
122121addid2d 11106 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (0 + 𝑥) = 𝑥)
123119, 122breqtrrd 5098 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
124123ralrimiva 3107 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥))
125 0re 10908 . . . . . 6 0 ∈ ℝ
126 alrple 12869 . . . . . 6 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
12768, 125, 126sylancl 585 . . . . 5 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ↔ ∀𝑥 ∈ ℝ+ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ (0 + 𝑥)))
128124, 127mpbird 256 . . . 4 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0)
129 metge0 23406 . . . . 5 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
1303, 66, 17, 129syl3anc 1369 . . . 4 (𝜑 → 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))
131 letri3 10991 . . . . 5 ((((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
13268, 125, 131sylancl 585 . . . 4 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) ≤ 0 ∧ 0 ≤ ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)))))
133128, 130, 132mpbir2and 709 . . 3 (𝜑 → ((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0)
134 meteq0 23400 . . . 4 ((𝐷 ∈ (Met‘𝑋) ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) ∈ 𝑋 ∧ ((⇝𝑡𝐽)‘𝐺) ∈ 𝑋) → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
1353, 66, 17, 134syl3anc 1369 . . 3 (𝜑 → (((𝐹‘((⇝𝑡𝐽)‘𝐺))𝐷((⇝𝑡𝐽)‘𝐺)) = 0 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
136133, 135mpbid 231 . 2 (𝜑 → (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺))
137 fveq2 6756 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → (𝐹𝑧) = (𝐹‘((⇝𝑡𝐽)‘𝐺)))
138 id 22 . . . 4 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → 𝑧 = ((⇝𝑡𝐽)‘𝐺))
139137, 138eqeq12d 2754 . . 3 (𝑧 = ((⇝𝑡𝐽)‘𝐺) → ((𝐹𝑧) = 𝑧 ↔ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)))
140139rspcev 3552 . 2 ((((⇝𝑡𝐽)‘𝐺) ∈ 𝑋 ∧ (𝐹‘((⇝𝑡𝐽)‘𝐺)) = ((⇝𝑡𝐽)‘𝐺)) → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
14117, 136, 140syl2anc 583 1 (𝜑 → ∃𝑧𝑋 (𝐹𝑧) = 𝑧)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  cz 12249  cuz 12511  +crp 12659  seqcseq 13649  ∞Metcxmet 20495  Metcmet 20496  MetOpencmopn 20500  TopOnctopon 21967  𝑡clm 22285  CMetccmet 24323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-rest 17050  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-top 21951  df-topon 21968  df-bases 22004  df-ntr 22079  df-nei 22157  df-lm 22288  df-haus 22374  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-cfil 24324  df-cau 24325  df-cmet 24326
This theorem is referenced by:  bfp  35909
  Copyright terms: Public domain W3C validator