Step | Hyp | Ref
| Expression |
1 | | bfp.2 |
. . . . 5
β’ (π β π· β (CMetβπ)) |
2 | | cmetmet 24794 |
. . . . 5
β’ (π· β (CMetβπ) β π· β (Metβπ)) |
3 | 1, 2 | syl 17 |
. . . 4
β’ (π β π· β (Metβπ)) |
4 | | metxmet 23831 |
. . . 4
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
5 | | bfp.8 |
. . . . 5
β’ π½ = (MetOpenβπ·) |
6 | 5 | mopntopon 23936 |
. . . 4
β’ (π· β (βMetβπ) β π½ β (TopOnβπ)) |
7 | 3, 4, 6 | 3syl 18 |
. . 3
β’ (π β π½ β (TopOnβπ)) |
8 | | bfp.3 |
. . . 4
β’ (π β π β β
) |
9 | | bfp.4 |
. . . 4
β’ (π β πΎ β
β+) |
10 | | bfp.5 |
. . . 4
β’ (π β πΎ < 1) |
11 | | bfp.6 |
. . . 4
β’ (π β πΉ:πβΆπ) |
12 | | bfp.7 |
. . . 4
β’ ((π β§ (π₯ β π β§ π¦ β π)) β ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
13 | | bfp.9 |
. . . 4
β’ (π β π΄ β π) |
14 | | bfp.10 |
. . . 4
β’ πΊ = seq1((πΉ β 1st ), (β Γ
{π΄})) |
15 | 1, 8, 9, 10, 11, 12, 5, 13, 14 | bfplem1 36678 |
. . 3
β’ (π β πΊ(βπ‘βπ½)((βπ‘βπ½)βπΊ)) |
16 | | lmcl 22792 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΊ(βπ‘βπ½)((βπ‘βπ½)βπΊ)) β
((βπ‘βπ½)βπΊ) β π) |
17 | 7, 15, 16 | syl2anc 584 |
. 2
β’ (π β
((βπ‘βπ½)βπΊ) β π) |
18 | 3 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π₯ β β+) β π· β (Metβπ)) |
19 | 18, 4 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β π· β (βMetβπ)) |
20 | | nnuz 12861 |
. . . . . . . . . 10
β’ β =
(β€β₯β1) |
21 | | 1zzd 12589 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β 1 β
β€) |
22 | | eqidd 2733 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β β) β (πΊβπ) = (πΊβπ)) |
23 | 15 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β πΊ(βπ‘βπ½)((βπ‘βπ½)βπΊ)) |
24 | | rphalfcl 12997 |
. . . . . . . . . . 11
β’ (π₯ β β+
β (π₯ / 2) β
β+) |
25 | 24 | adantl 482 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β (π₯ / 2) β
β+) |
26 | 5, 19, 20, 21, 22, 23, 25 | lmmcvg 24769 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
βπ β β
βπ β
(β€β₯βπ)((πΊβπ) β π β§ ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
27 | | simpr 485 |
. . . . . . . . . . . 12
β’ (((πΊβπ) β π β§ ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) |
28 | 27 | ralimi 3083 |
. . . . . . . . . . 11
β’
(βπ β
(β€β₯βπ)((πΊβπ) β π β§ ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β βπ β (β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) |
29 | | nnz 12575 |
. . . . . . . . . . . . . . 15
β’ (π β β β π β
β€) |
30 | 29 | adantl 482 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β π β
β€) |
31 | | uzid 12833 |
. . . . . . . . . . . . . 14
β’ (π β β€ β π β
(β€β₯βπ)) |
32 | | fveq2 6888 |
. . . . . . . . . . . . . . . . 17
β’ (π = π β (πΊβπ) = (πΊβπ)) |
33 | 32 | oveq1d 7420 |
. . . . . . . . . . . . . . . 16
β’ (π = π β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) = ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
34 | 33 | breq1d 5157 |
. . . . . . . . . . . . . . 15
β’ (π = π β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
35 | 34 | rspcv 3608 |
. . . . . . . . . . . . . 14
β’ (π β
(β€β₯βπ) β (βπ β (β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
36 | 30, 31, 35 | 3syl 18 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
37 | 30, 31 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β+) β§ π β β) β π β
(β€β₯βπ)) |
38 | | peano2uz 12881 |
. . . . . . . . . . . . . . 15
β’ (π β
(β€β₯βπ) β (π + 1) β
(β€β₯βπ)) |
39 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . 18
β’ (π = (π + 1) β (πΊβπ) = (πΊβ(π + 1))) |
40 | 39 | oveq1d 7420 |
. . . . . . . . . . . . . . . . 17
β’ (π = (π + 1) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) = ((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ))) |
41 | 40 | breq1d 5157 |
. . . . . . . . . . . . . . . 16
β’ (π = (π + 1) β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
42 | 41 | rspcv 3608 |
. . . . . . . . . . . . . . 15
β’ ((π + 1) β
(β€β₯βπ) β (βπ β (β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
43 | 37, 38, 42 | 3syl 18 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
44 | | 1zzd 12589 |
. . . . . . . . . . . . . . . . . 18
β’ (π β 1 β
β€) |
45 | 20, 14, 44, 13, 11 | algrp1 16507 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β) β (πΊβ(π + 1)) = (πΉβ(πΊβπ))) |
46 | 45 | adantlr 713 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β+) β§ π β β) β (πΊβ(π + 1)) = (πΉβ(πΊβπ))) |
47 | 46 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ)) = ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) |
48 | 47 | breq1d 5157 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (((πΊβ(π + 1))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
49 | 43, 48 | sylibd 238 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2))) |
50 | 36, 49 | jcad 513 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β§ ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)))) |
51 | 3 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β π· β (Metβπ)) |
52 | 20, 14, 44, 13, 11 | algrf 16506 |
. . . . . . . . . . . . . . . 16
β’ (π β πΊ:ββΆπ) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π₯ β β+) β πΊ:ββΆπ) |
54 | 53 | ffvelcdmda 7083 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (πΊβπ) β π) |
55 | 17 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β
((βπ‘βπ½)βπΊ) β π) |
56 | | metcl 23829 |
. . . . . . . . . . . . . 14
β’ ((π· β (Metβπ) β§ (πΊβπ) β π β§
((βπ‘βπ½)βπΊ) β π) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) β β) |
57 | 51, 54, 55, 56 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) β β) |
58 | 11 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β+) β§ π β β) β πΉ:πβΆπ) |
59 | 58, 54 | ffvelcdmd 7084 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (πΉβ(πΊβπ)) β π) |
60 | | metcl 23829 |
. . . . . . . . . . . . . 14
β’ ((π· β (Metβπ) β§ (πΉβ(πΊβπ)) β π β§
((βπ‘βπ½)βπΊ) β π) β ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) β β) |
61 | 51, 59, 55, 60 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) β β) |
62 | | rpre 12978 |
. . . . . . . . . . . . . 14
β’ (π₯ β β+
β π₯ β
β) |
63 | 62 | ad2antlr 725 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β π₯ β
β) |
64 | | lt2halves 12443 |
. . . . . . . . . . . . 13
β’ ((((πΊβπ)π·((βπ‘βπ½)βπΊ)) β β β§ ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) β β β§ π₯ β β) β ((((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β§ ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) < π₯)) |
65 | 57, 61, 63, 64 | syl3anc 1371 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ π β β) β
((((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β§ ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) < π₯)) |
66 | 11, 17 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ (π β (πΉβ((βπ‘βπ½)βπΊ)) β π) |
67 | | metcl 23829 |
. . . . . . . . . . . . . . . 16
β’ ((π· β (Metβπ) β§ (πΉβ((βπ‘βπ½)βπΊ)) β π β§ ((βπ‘βπ½)βπΊ) β π) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β) |
68 | 3, 66, 17, 67 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (π β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β) |
69 | 68 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β) |
70 | 58, 55 | ffvelcdmd 7084 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β+) β§ π β β) β (πΉβ((βπ‘βπ½)βπΊ)) β π) |
71 | | metcl 23829 |
. . . . . . . . . . . . . . . 16
β’ ((π· β (Metβπ) β§ (πΉβ(πΊβπ)) β π β§ (πΉβ((βπ‘βπ½)βπΊ)) β π) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β β) |
72 | 51, 59, 70, 71 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β β) |
73 | 72, 61 | readdcld 11239 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β β) |
74 | 57, 61 | readdcld 11239 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β β) |
75 | | mettri2 23838 |
. . . . . . . . . . . . . . 15
β’ ((π· β (Metβπ) β§ ((πΉβ(πΊβπ)) β π β§ (πΉβ((βπ‘βπ½)βπΊ)) β π β§ ((βπ‘βπ½)βπΊ) β π)) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)))) |
76 | 51, 59, 70, 55, 75 | syl13anc 1372 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)))) |
77 | 9 | rpred 13012 |
. . . . . . . . . . . . . . . . . 18
β’ (π β πΎ β β) |
78 | 77 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β β+) β§ π β β) β πΎ β
β) |
79 | 78, 57 | remulcld 11240 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β+) β§ π β β) β (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))) β β) |
80 | 54, 55 | jca 512 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΊβπ) β π β§
((βπ‘βπ½)βπΊ) β π)) |
81 | 12 | ralrimivva 3200 |
. . . . . . . . . . . . . . . . . 18
β’ (π β βπ₯ β π βπ¦ β π ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
82 | 81 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β β+) β§ π β β) β
βπ₯ β π βπ¦ β π ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦))) |
83 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = (πΊβπ) β (πΉβπ₯) = (πΉβ(πΊβπ))) |
84 | 83 | oveq1d 7420 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = (πΊβπ) β ((πΉβπ₯)π·(πΉβπ¦)) = ((πΉβ(πΊβπ))π·(πΉβπ¦))) |
85 | | oveq1 7412 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ = (πΊβπ) β (π₯π·π¦) = ((πΊβπ)π·π¦)) |
86 | 85 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ = (πΊβπ) β (πΎ Β· (π₯π·π¦)) = (πΎ Β· ((πΊβπ)π·π¦))) |
87 | 84, 86 | breq12d 5160 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ = (πΊβπ) β (((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦)) β ((πΉβ(πΊβπ))π·(πΉβπ¦)) β€ (πΎ Β· ((πΊβπ)π·π¦)))) |
88 | | fveq2 6888 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ =
((βπ‘βπ½)βπΊ) β (πΉβπ¦) = (πΉβ((βπ‘βπ½)βπΊ))) |
89 | 88 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ =
((βπ‘βπ½)βπΊ) β ((πΉβ(πΊβπ))π·(πΉβπ¦)) = ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ)))) |
90 | | oveq2 7413 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π¦ =
((βπ‘βπ½)βπΊ) β ((πΊβπ)π·π¦) = ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
91 | 90 | oveq2d 7421 |
. . . . . . . . . . . . . . . . . . 19
β’ (π¦ =
((βπ‘βπ½)βπΊ) β (πΎ Β· ((πΊβπ)π·π¦)) = (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ)))) |
92 | 89, 91 | breq12d 5160 |
. . . . . . . . . . . . . . . . . 18
β’ (π¦ =
((βπ‘βπ½)βπΊ) β (((πΉβ(πΊβπ))π·(πΉβπ¦)) β€ (πΎ Β· ((πΊβπ)π·π¦)) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β€ (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))))) |
93 | 87, 92 | rspc2v 3621 |
. . . . . . . . . . . . . . . . 17
β’ (((πΊβπ) β π β§
((βπ‘βπ½)βπΊ) β π) β (βπ₯ β π βπ¦ β π ((πΉβπ₯)π·(πΉβπ¦)) β€ (πΎ Β· (π₯π·π¦)) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β€ (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))))) |
94 | 80, 82, 93 | sylc 65 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β€ (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ)))) |
95 | | 1red 11211 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π₯ β β+) β§ π β β) β 1 β
β) |
96 | | metge0 23842 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π· β (Metβπ) β§ (πΊβπ) β π β§
((βπ‘βπ½)βπΊ) β π) β 0 β€ ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
97 | 51, 54, 55, 96 | syl3anc 1371 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π₯ β β+) β§ π β β) β 0 β€
((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
98 | | 1re 11210 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 1 β
β |
99 | | ltle 11298 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((πΎ β β β§ 1 β
β) β (πΎ < 1
β πΎ β€
1)) |
100 | 77, 98, 99 | sylancl 586 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π β (πΎ < 1 β πΎ β€ 1)) |
101 | 10, 100 | mpd 15 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β πΎ β€ 1) |
102 | 101 | ad2antrr 724 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π₯ β β+) β§ π β β) β πΎ β€ 1) |
103 | 78, 95, 57, 97, 102 | lemul1ad 12149 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β β+) β§ π β β) β (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))) β€ (1 Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ)))) |
104 | 57 | recnd 11238 |
. . . . . . . . . . . . . . . . . 18
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΊβπ)π·((βπ‘βπ½)βπΊ)) β β) |
105 | 104 | mullidd 11228 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ π₯ β β+) β§ π β β) β (1
Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))) = ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
106 | 103, 105 | breqtrd 5173 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ π₯ β β+) β§ π β β) β (πΎ Β· ((πΊβπ)π·((βπ‘βπ½)βπΊ))) β€ ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
107 | 72, 79, 57, 94, 106 | letrd 11367 |
. . . . . . . . . . . . . . 15
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) β€ ((πΊβπ)π·((βπ‘βπ½)βπΊ))) |
108 | 72, 57, 61, 107 | leadd1dd 11824 |
. . . . . . . . . . . . . 14
β’ (((π β§ π₯ β β+) β§ π β β) β (((πΉβ(πΊβπ))π·(πΉβ((βπ‘βπ½)βπΊ))) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β€ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)))) |
109 | 69, 73, 74, 76, 108 | letrd 11367 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ)))) |
110 | | lelttr 11300 |
. . . . . . . . . . . . . 14
β’ ((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β β§ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β β β§ π₯ β β) β ((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β§ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) < π₯) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
111 | 69, 74, 63, 110 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ (((π β§ π₯ β β+) β§ π β β) β
((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) β§ (((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) < π₯) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
112 | 109, 111 | mpand 693 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ π β β) β
((((πΊβπ)π·((βπ‘βπ½)βπΊ)) + ((πΉβ(πΊβπ))π·((βπ‘βπ½)βπΊ))) < π₯ β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
113 | 50, 65, 112 | 3syld 60 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
114 | 28, 113 | syl5 34 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β β) β
(βπ β
(β€β₯βπ)((πΊβπ) β π β§ ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
115 | 114 | rexlimdva 3155 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
(βπ β β
βπ β
(β€β₯βπ)((πΊβπ) β π β§ ((πΊβπ)π·((βπ‘βπ½)βπΊ)) < (π₯ / 2)) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯)) |
116 | 26, 115 | mpd 15 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯) |
117 | | ltle 11298 |
. . . . . . . . 9
β’ ((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β β§ π₯ β β) β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯ β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ π₯)) |
118 | 68, 62, 117 | syl2an 596 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) < π₯ β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ π₯)) |
119 | 116, 118 | mpd 15 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ π₯) |
120 | 62 | adantl 482 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β π₯ β
β) |
121 | 120 | recnd 11238 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β π₯ β
β) |
122 | 121 | addlidd 11411 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β (0 +
π₯) = π₯) |
123 | 119, 122 | breqtrrd 5175 |
. . . . . 6
β’ ((π β§ π₯ β β+) β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (0 + π₯)) |
124 | 123 | ralrimiva 3146 |
. . . . 5
β’ (π β βπ₯ β β+ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (0 + π₯)) |
125 | | 0re 11212 |
. . . . . 6
β’ 0 β
β |
126 | | alrple 13181 |
. . . . . 6
β’ ((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β β§ 0 β β) β
(((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ 0 β βπ₯ β β+ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (0 + π₯))) |
127 | 68, 125, 126 | sylancl 586 |
. . . . 5
β’ (π β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ 0 β βπ₯ β β+ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ (0 + π₯))) |
128 | 124, 127 | mpbird 256 |
. . . 4
β’ (π β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ 0) |
129 | | metge0 23842 |
. . . . 5
β’ ((π· β (Metβπ) β§ (πΉβ((βπ‘βπ½)βπΊ)) β π β§ ((βπ‘βπ½)βπΊ) β π) β 0 β€ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ))) |
130 | 3, 66, 17, 129 | syl3anc 1371 |
. . . 4
β’ (π β 0 β€ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ))) |
131 | | letri3 11295 |
. . . . 5
β’ ((((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β β β§ 0 β β) β
(((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) = 0 β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ 0 β§ 0 β€ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ))))) |
132 | 68, 125, 131 | sylancl 586 |
. . . 4
β’ (π β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) = 0 β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) β€ 0 β§ 0 β€ ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ))))) |
133 | 128, 130,
132 | mpbir2and 711 |
. . 3
β’ (π β ((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) = 0) |
134 | | meteq0 23836 |
. . . 4
β’ ((π· β (Metβπ) β§ (πΉβ((βπ‘βπ½)βπΊ)) β π β§ ((βπ‘βπ½)βπΊ) β π) β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) = 0 β (πΉβ((βπ‘βπ½)βπΊ)) = ((βπ‘βπ½)βπΊ))) |
135 | 3, 66, 17, 134 | syl3anc 1371 |
. . 3
β’ (π β (((πΉβ((βπ‘βπ½)βπΊ))π·((βπ‘βπ½)βπΊ)) = 0 β (πΉβ((βπ‘βπ½)βπΊ)) = ((βπ‘βπ½)βπΊ))) |
136 | 133, 135 | mpbid 231 |
. 2
β’ (π β (πΉβ((βπ‘βπ½)βπΊ)) = ((βπ‘βπ½)βπΊ)) |
137 | | fveq2 6888 |
. . . 4
β’ (π§ =
((βπ‘βπ½)βπΊ) β (πΉβπ§) = (πΉβ((βπ‘βπ½)βπΊ))) |
138 | | id 22 |
. . . 4
β’ (π§ =
((βπ‘βπ½)βπΊ) β π§ = ((βπ‘βπ½)βπΊ)) |
139 | 137, 138 | eqeq12d 2748 |
. . 3
β’ (π§ =
((βπ‘βπ½)βπΊ) β ((πΉβπ§) = π§ β (πΉβ((βπ‘βπ½)βπΊ)) = ((βπ‘βπ½)βπΊ))) |
140 | 139 | rspcev 3612 |
. 2
β’
((((βπ‘βπ½)βπΊ) β π β§ (πΉβ((βπ‘βπ½)βπΊ)) = ((βπ‘βπ½)βπΊ)) β βπ§ β π (πΉβπ§) = π§) |
141 | 17, 136, 140 | syl2anc 584 |
1
β’ (π β βπ§ β π (πΉβπ§) = π§) |