MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulcn2 Structured version   Visualization version   GIF version

Theorem mulcn2 15005
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 12462 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1130 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 abscl 14691 . . . . . 6 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
433ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐶) ∈ ℝ)
5 abscl 14691 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
653ad2ant2 1131 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 1re 10684 . . . . . . . . 9 1 ∈ ℝ
8 readdcl 10663 . . . . . . . . 9 (((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐵) + 1) ∈ ℝ)
96, 7, 8sylancl 589 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ)
10 absge0 14700 . . . . . . . . . 10 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
11 0lt1 11205 . . . . . . . . . . 11 0 < 1
12 addgegt0 11170 . . . . . . . . . . . 12 ((((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (abs‘𝐵) ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
1312an4s 659 . . . . . . . . . . 11 ((((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
147, 11, 13mpanr12 704 . . . . . . . . . 10 (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) → 0 < ((abs‘𝐵) + 1))
155, 10, 14syl2anc 587 . . . . . . . . 9 (𝐵 ∈ ℂ → 0 < ((abs‘𝐵) + 1))
16153ad2ant2 1131 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐵) + 1))
179, 16elrpd 12474 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ+)
182, 17rpdivcld 12494 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+)
1918rpred 12477 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
204, 19readdcld 10713 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
21 absge0 14700 . . . . . 6 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
22213ad2ant3 1132 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 ≤ (abs‘𝐶))
23 elrp 12437 . . . . . 6 (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ↔ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
24 addgegt0 11170 . . . . . . 7 ((((abs‘𝐶) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) ∧ (0 ≤ (abs‘𝐶) ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2524an4s 659 . . . . . 6 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2623, 25sylan2b 596 . . . . 5 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
274, 22, 18, 26syl21anc 836 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2820, 27elrpd 12474 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
292, 28rpdivcld 12494 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+)
30 simprl 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
31 simpl2 1189 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
3230, 31subcld 11040 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝐵) ∈ ℂ)
3332abscld 14849 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝐵)) ∈ ℝ)
342adantr 484 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ+)
3534rpred 12477 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ)
3628adantr 484 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
3733, 35, 36ltmuldivd 12524 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
38 simprr 772 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
39 simpl3 1190 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
4038, 39abs2difd 14870 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)))
4138abscld 14849 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝑣) ∈ ℝ)
424adantr 484 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐶) ∈ ℝ)
4341, 42resubcld 11111 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ)
4438, 39subcld 11040 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝐶) ∈ ℂ)
4544abscld 14849 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝐶)) ∈ ℝ)
4619adantr 484 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
47 lelttr 10774 . . . . . . . . . . . . . 14 ((((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ ∧ (abs‘(𝑣𝐶)) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4843, 45, 46, 47syl3anc 1368 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4940, 48mpand 694 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
5041, 42, 46ltsubadd2d 11281 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) ↔ (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5149, 50sylibd 242 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5220adantr 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
53 ltle 10772 . . . . . . . . . . . 12 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5441, 52, 53syl2anc 587 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5551, 54syld 47 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5632absge0d 14857 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 0 ≤ (abs‘(𝑢𝐵)))
57 lemul2a 11538 . . . . . . . . . . . 12 ((((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) ∧ (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5857ex 416 . . . . . . . . . . 11 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
5941, 52, 33, 56, 58syl112anc 1371 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
6033, 41remulcld 10714 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ)
6133, 52remulcld 10714 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ)
62 lelttr 10774 . . . . . . . . . . . 12 ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6360, 61, 35, 62syl3anc 1368 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6463expd 419 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6555, 59, 643syld 60 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6665com23 86 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6737, 66sylbird 263 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6867impd 414 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6932, 38absmuld 14867 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = ((abs‘(𝑢𝐵)) · (abs‘𝑣)))
7030, 31, 38subdird 11140 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢𝐵) · 𝑣) = ((𝑢 · 𝑣) − (𝐵 · 𝑣)))
7170fveq2d 6666 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7269, 71eqtr3d 2795 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7372breq1d 5045 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2) ↔ (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7468, 73sylibd 242 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7517adantr 484 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ+)
7645, 35, 75ltmuldiv2d 12525 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
7731, 38, 39subdid 11139 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · (𝑣𝐶)) = ((𝐵 · 𝑣) − (𝐵 · 𝐶)))
7877fveq2d 6666 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))))
7931, 44absmuld 14867 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8078, 79eqtr3d 2795 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8131abscld 14849 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ∈ ℝ)
8281lep1d 11614 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ≤ ((abs‘𝐵) + 1))
839adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ)
84 abscl 14691 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → (abs‘(𝑣𝐶)) ∈ ℝ)
85 absge0 14700 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → 0 ≤ (abs‘(𝑣𝐶)))
8684, 85jca 515 . . . . . . . . . . . 12 ((𝑣𝐶) ∈ ℂ → ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶))))
87 lemul1a 11537 . . . . . . . . . . . . 13 ((((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) ∧ (abs‘𝐵) ≤ ((abs‘𝐵) + 1)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
8887ex 416 . . . . . . . . . . . 12 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
8986, 88syl3an3 1162 . . . . . . . . . . 11 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ (𝑣𝐶) ∈ ℂ) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9081, 83, 44, 89syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9182, 90mpd 15 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9280, 91eqbrtrd 5057 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9331, 38mulcld 10704 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝑣) ∈ ℂ)
9431, 39mulcld 10704 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
9593, 94subcld 11040 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 · 𝑣) − (𝐵 · 𝐶)) ∈ ℂ)
9695abscld 14849 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ)
9783, 45remulcld 10714 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ)
98 lelttr 10774 . . . . . . . . 9 (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
9996, 97, 35, 98syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10092, 99mpand 694 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10176, 100sylbird 263 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
102101adantld 494 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10374, 102jcad 516 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2))))
104 mulcl 10664 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
105104adantl 485 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
106 simpl1 1188 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
107106rpred 12477 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
108 abs3lem 14751 . . . . 5 ((((𝑢 · 𝑣) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) ∧ ((𝐵 · 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
109105, 94, 93, 107, 108syl22anc 837 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
110103, 109syld 47 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
111110ralrimivva 3120 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
112 breq2 5039 . . . . . 6 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
113112anbi1d 632 . . . . 5 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
114113imbi1d 345 . . . 4 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1151142ralbidv 3128 . . 3 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
116 breq2 5039 . . . . . 6 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
117116anbi2d 631 . . . . 5 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
118117imbi1d 345 . . . 4 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1191182ralbidv 3128 . . 3 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
120115, 119rspc2ev 3555 . 2 ((((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
12129, 18, 111, 120syl3anc 1368 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3070  wrex 3071   class class class wbr 5035  cfv 6339  (class class class)co 7155  cc 10578  cr 10579  0cc0 10580  1c1 10581   + caddc 10583   · cmul 10585   < clt 10718  cle 10719  cmin 10913   / cdiv 11340  2c2 11734  +crp 12435  abscabs 14646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-sup 8944  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-n0 11940  df-z 12026  df-uz 12288  df-rp 12436  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648
This theorem is referenced by:  climmul  15042  rlimmul  15054  mulcn  23573  mulc1cncf  23611  mullimc  42652  mullimcf  42659
  Copyright terms: Public domain W3C validator