Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem1 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem1 45849
Description: Lemma 1 for dignn0flhalf 45852. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem1
StepHypRef Expression
1 zre 12253 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
213ad2ant1 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 2rp 12664 . . . . . . . . 9 2 ∈ ℝ+
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
5 nnz 12272 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
64, 5rpexpcld 13890 . . . . . . 7 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ+)
76rpred 12701 . . . . . 6 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ)
873ad2ant3 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ)
92, 8resubcld 11333 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − (2↑𝑁)) ∈ ℝ)
1063ad2ant3 1133 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
119, 10modcld 13523 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℝ)
129, 11resubcld 11333 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
13 peano2zm 12293 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1413zred 12355 . . . . 5 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1131 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
1615, 10modcld 13523 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)
1715, 16resubcld 11333 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
18 1red 10907 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
1918, 16readdcld 10935 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
208, 11readdcld 10935 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
21 2nn 11976 . . . . . . . . . . . . . 14 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 12170 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2422, 23nnexpcld 13888 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
2524anim2i 616 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
26253adant2 1129 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
27 m1modmmod 45755 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
29 nnz 12272 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
3029a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ))
31 zcn 12254 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
32 xp1d2m1eqxm1d2 12157 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (((𝐴 + 1) / 2) − 1) = ((𝐴 − 1) / 2))
3332eqcomd 2744 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3431, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3534adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3635eleq1d 2823 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ ↔ (((𝐴 + 1) / 2) − 1) ∈ ℤ))
37 peano2z 12291 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ)
3831adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
39 1cnd 10901 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
4038, 39addcld 10925 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
4140halfcld 12148 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℂ)
4241, 39npcand 11266 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) + 1) = ((𝐴 + 1) / 2))
4342eleq1d 2823 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ ↔ ((𝐴 + 1) / 2) ∈ ℤ))
4437, 43syl5ib 243 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
4536, 44sylbid 239 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
46 mod0 13524 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
471, 6, 46syl2an 595 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
4822nnzd 12354 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℤ)
49 nnm1nn0 12204 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
50 zexpcl 13725 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℤ)
5148, 49, 50syl2anc 583 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℤ)
5251adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℤ)
5352adantr 480 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (2↑(𝑁 − 1)) ∈ ℤ)
54 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (𝐴 / (2↑𝑁)) ∈ ℤ)
5553, 54zmulcld 12361 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ)
5655ex 412 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ))
575adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
5857zcnd 12356 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5939negcld 11249 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℂ)
6058, 39negsubd 11268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 + -1) = (𝑁 − 1))
6160eqcomd 2744 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) = (𝑁 + -1))
6258, 59, 61mvrladdd 11318 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) − 𝑁) = -1)
6362oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = (2↑-1))
64 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℂ)
65 2ne0 12007 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ≠ 0
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ≠ 0)
67 1zzd 12281 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 1 ∈ ℤ)
685, 67zsubcld 12360 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
6968, 5jca 511 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
7069adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
71 expsub 13759 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
7264, 66, 70, 71syl21anc 834 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
73 expn1 13720 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (2↑-1) = (1 / 2))
7464, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑-1) = (1 / 2))
7563, 72, 743eqtr3d 2786 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) / (2↑𝑁)) = (1 / 2))
7675oveq2d 7271 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))) = (𝐴 · (1 / 2)))
77 2cnd 11981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7877, 49expcld 13792 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℂ)
7978adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℂ)
803a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+)
8180, 57rpexpcld 13890 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
8281rpcnne0d 12710 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
83 div12 11585 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(𝑁 − 1)) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8479, 38, 82, 83syl3anc 1369 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8538, 64, 66divrecd 11684 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 2) = (𝐴 · (1 / 2)))
8676, 84, 853eqtr4d 2788 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 / 2))
8786eleq1d 2823 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ ↔ (𝐴 / 2) ∈ ℤ))
8856, 87sylibd 238 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → (𝐴 / 2) ∈ ℤ))
8947, 88sylbid 239 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → (𝐴 / 2) ∈ ℤ))
90 zeo2 12337 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9190adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9289, 91sylibd 238 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9392necon2ad 2957 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) / 2) ∈ ℤ → (𝐴 mod (2↑𝑁)) ≠ 0))
9430, 45, 933syld 60 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0))
9594ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
9695com23 86 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
97963imp 1109 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ≠ 0)
9897neneqd 2947 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ (𝐴 mod (2↑𝑁)) = 0)
9998iffalsed 4467 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1) = -1)
10028, 99eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = -1)
101 neg1lt0 12020 . . . . . . . . . 10 -1 < 0
102 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
103 1lt2 12074 . . . . . . . . . . . . 13 1 < 2
104 expgt1 13749 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 2) → 1 < (2↑𝑁))
105102, 103, 104mp3an13 1450 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (2↑𝑁))
106 1red 10907 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
107106, 7posdifd 11492 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 < (2↑𝑁) ↔ 0 < ((2↑𝑁) − 1)))
108105, 107mpbid 231 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < ((2↑𝑁) − 1))
109106renegcld 11332 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → -1 ∈ ℝ)
110 0red 10909 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1117, 106resubcld 11333 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℝ)
112 lttr 10982 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ ((2↑𝑁) − 1) ∈ ℝ) → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
113109, 110, 111, 112syl3anc 1369 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
114108, 113mpan2d 690 . . . . . . . . . 10 (𝑁 ∈ ℕ → (-1 < 0 → -1 < ((2↑𝑁) − 1)))
115101, 114mpi 20 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 < ((2↑𝑁) − 1))
1161153ad2ant3 1133 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 < ((2↑𝑁) − 1))
117100, 116eqbrtrd 5092 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1))
1182, 10modcld 13523 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℝ)
119 ltsubadd2b 45745 . . . . . . . 8 (((1 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ) ∧ ((𝐴 mod (2↑𝑁)) ∈ ℝ ∧ ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
12018, 8, 118, 16, 119syl22anc 835 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
121117, 120mpbid 231 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
122 modid0 13545 . . . . . . . . . . . 12 ((2↑𝑁) ∈ ℝ+ → ((2↑𝑁) mod (2↑𝑁)) = 0)
12310, 122syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) mod (2↑𝑁)) = 0)
124123oveq2d 7271 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) − 0))
125118recnd 10934 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
126125subid1d 11251 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − 0) = (𝐴 mod (2↑𝑁)))
127124, 126eqtrd 2778 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = (𝐴 mod (2↑𝑁)))
128127oveq1d 7270 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)))
129 modsubmodmod 13578 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
1302, 8, 10, 129syl3anc 1369 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
131 modabs2 13553 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
1322, 10, 131syl2anc 583 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
133128, 130, 1323eqtr3d 2786 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
134133oveq2d 7271 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
135121, 134breqtrrd 5098 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))))
13619, 20, 2, 135ltsub2dd 11518 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))) < (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
137313ad2ant1 1131 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1388recnd 10934 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
13911recnd 10934 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℂ)
140137, 138, 139subsub4d 11293 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))))
141 1cnd 10901 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
14216recnd 10934 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℂ)
143137, 141, 142subsub4d 11293 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) = (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
144136, 140, 1433brtr4d 5102 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) < ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))))
14512, 17, 10, 144ltdiv1dd 12758 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)) < (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
1467recnd 10934 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
1471463ad2ant3 1133 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
14865a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
14977, 148, 5expne0d 13798 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ≠ 0)
1501493ad2ant3 1133 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ≠ 0)
151 divsub1dir 45746 . . . . 5 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → ((𝐴 / (2↑𝑁)) − 1) = ((𝐴 − (2↑𝑁)) / (2↑𝑁)))
152151fveq2d 6760 . . . 4 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
153137, 147, 150, 152syl3anc 1369 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
154 fldivmod 45752 . . . 4 (((𝐴 − (2↑𝑁)) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
1559, 10, 154syl2anc 583 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
156153, 155eqtrd 2778 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
157 fldivmod 45752 . . 3 (((𝐴 − 1) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
15815, 10, 157syl2anc 583 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
159145, 156, 1583brtr4d 5102 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  ifcif 4456   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cmin 11135  -cneg 11136   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  +crp 12659  cfl 13438   mod cmo 13517  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711
This theorem is referenced by:  dignn0flhalflem2  45850
  Copyright terms: Public domain W3C validator