Proof of Theorem dignn0flhalflem1
Step | Hyp | Ref
| Expression |
1 | | zre 12253 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℝ) |
2 | 1 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝐴 ∈
ℝ) |
3 | | 2rp 12664 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
4 | 3 | a1i 11 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 2 ∈
ℝ+) |
5 | | nnz 12272 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
6 | 4, 5 | rpexpcld 13890 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℝ+) |
7 | 6 | rpred 12701 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℝ) |
8 | 7 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℝ) |
9 | 2, 8 | resubcld 11333 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 −
(2↑𝑁)) ∈
ℝ) |
10 | 6 | 3ad2ant3 1133 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℝ+) |
11 | 9, 10 | modcld 13523 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) mod
(2↑𝑁)) ∈
ℝ) |
12 | 9, 11 | resubcld 11333 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ) |
13 | | peano2zm 12293 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℤ) |
14 | 13 | zred 12355 |
. . . . 5
⊢ (𝐴 ∈ ℤ → (𝐴 − 1) ∈
ℝ) |
15 | 14 | 3ad2ant1 1131 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 − 1) ∈
ℝ) |
16 | 15, 10 | modcld 13523 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 − 1) mod
(2↑𝑁)) ∈
ℝ) |
17 | 15, 16 | resubcld 11333 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 − 1)
− ((𝐴 − 1) mod
(2↑𝑁))) ∈
ℝ) |
18 | | 1red 10907 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 1 ∈ ℝ) |
19 | 18, 16 | readdcld 10935 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (1 + ((𝐴 − 1)
mod (2↑𝑁))) ∈
ℝ) |
20 | 8, 11 | readdcld 10935 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((2↑𝑁) +
((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ) |
21 | | 2nn 11976 |
. . . . . . . . . . . . . 14
⊢ 2 ∈
ℕ |
22 | 21 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 2 ∈
ℕ) |
23 | | nnnn0 12170 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
24 | 22, 23 | nnexpcld 13888 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℕ) |
25 | 24 | anim2i 616 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧
(2↑𝑁) ∈
ℕ)) |
26 | 25 | 3adant2 1129 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 ∈ ℤ
∧ (2↑𝑁) ∈
ℕ)) |
27 | | m1modmmod 45755 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧
(2↑𝑁) ∈ ℕ)
→ (((𝐴 − 1) mod
(2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1)) |
28 | 26, 27 | syl 17 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 − 1) mod
(2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1)) |
29 | | nnz 12272 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 − 1) / 2)
∈ ℤ) |
30 | 29 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ
→ ((𝐴 − 1) / 2)
∈ ℤ)) |
31 | | zcn 12254 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℤ → 𝐴 ∈
ℂ) |
32 | | xp1d2m1eqxm1d2 12157 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐴 ∈ ℂ → (((𝐴 + 1) / 2) − 1) = ((𝐴 − 1) /
2)) |
33 | 32 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐴 ∈ ℂ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) −
1)) |
34 | 31, 33 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℤ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) −
1)) |
35 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) −
1)) |
36 | 35 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ
↔ (((𝐴 + 1) / 2)
− 1) ∈ ℤ)) |
37 | | peano2z 12291 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 + 1) / 2) − 1) ∈
ℤ → ((((𝐴 + 1) /
2) − 1) + 1) ∈ ℤ) |
38 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
ℂ) |
39 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈
ℂ) |
40 | 38, 39 | addcld 10925 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈
ℂ) |
41 | 40 | halfcld 12148 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) / 2) ∈
ℂ) |
42 | 41, 39 | npcand 11266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝐴 + 1) / 2) − 1)
+ 1) = ((𝐴 + 1) /
2)) |
43 | 42 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(((((𝐴 + 1) / 2) − 1)
+ 1) ∈ ℤ ↔ ((𝐴 + 1) / 2) ∈ ℤ)) |
44 | 37, 43 | syl5ib 243 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝐴 + 1) / 2) − 1)
∈ ℤ → ((𝐴 +
1) / 2) ∈ ℤ)) |
45 | 36, 44 | sylbid 239 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ
→ ((𝐴 + 1) / 2) ∈
ℤ)) |
46 | | mod0 13524 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℝ ∧
(2↑𝑁) ∈
ℝ+) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ)) |
47 | 1, 6, 46 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ)) |
48 | 22 | nnzd 12354 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 2 ∈
ℤ) |
49 | | nnm1nn0 12204 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
50 | | zexpcl 13725 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((2
∈ ℤ ∧ (𝑁
− 1) ∈ ℕ0) → (2↑(𝑁 − 1)) ∈
ℤ) |
51 | 48, 49, 50 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ →
(2↑(𝑁 − 1))
∈ ℤ) |
52 | 51 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑(𝑁 − 1))
∈ ℤ) |
53 | 52 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (2↑(𝑁 − 1)) ∈
ℤ) |
54 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (𝐴 / (2↑𝑁)) ∈ ℤ) |
55 | 53, 54 | zmulcld 12361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ) |
56 | 55 | ex 412 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ)) |
57 | 5 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℤ) |
58 | 57 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℂ) |
59 | 39 | negcld 11249 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -1
∈ ℂ) |
60 | 58, 39 | negsubd 11268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 + -1) = (𝑁 − 1)) |
61 | 60 | eqcomd 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) = (𝑁 + -1)) |
62 | 58, 59, 61 | mvrladdd 11318 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) − 𝑁) = -1) |
63 | 62 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑((𝑁 − 1)
− 𝑁)) =
(2↑-1)) |
64 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈
ℂ) |
65 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 2 ≠
0 |
66 | 65 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ≠
0) |
67 | | 1zzd 12281 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑁 ∈ ℕ → 1 ∈
ℤ) |
68 | 5, 67 | zsubcld 12360 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℤ) |
69 | 68, 5 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℤ ∧
𝑁 ∈
ℤ)) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℤ ∧
𝑁 ∈
ℤ)) |
71 | | expsub 13759 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((2
∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
(2↑((𝑁 − 1)
− 𝑁)) =
((2↑(𝑁 − 1)) /
(2↑𝑁))) |
72 | 64, 66, 70, 71 | syl21anc 834 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑((𝑁 − 1)
− 𝑁)) =
((2↑(𝑁 − 1)) /
(2↑𝑁))) |
73 | | expn1 13720 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (2 ∈
ℂ → (2↑-1) = (1 / 2)) |
74 | 64, 73 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑-1) = (1 / 2)) |
75 | 63, 72, 74 | 3eqtr3d 2786 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((2↑(𝑁 − 1)) /
(2↑𝑁)) = (1 /
2)) |
76 | 75 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))) = (𝐴 · (1 / 2))) |
77 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑁 ∈ ℕ → 2 ∈
ℂ) |
78 | 77, 49 | expcld 13792 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ →
(2↑(𝑁 − 1))
∈ ℂ) |
79 | 78 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑(𝑁 − 1))
∈ ℂ) |
80 | 3 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈
ℝ+) |
81 | 80, 57 | rpexpcld 13890 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(2↑𝑁) ∈
ℝ+) |
82 | 81 | rpcnne0d 12710 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((2↑𝑁) ∈ ℂ
∧ (2↑𝑁) ≠
0)) |
83 | | div12 11585 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((2↑(𝑁 −
1)) ∈ ℂ ∧ 𝐴
∈ ℂ ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) →
((2↑(𝑁 − 1))
· (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁)))) |
84 | 79, 38, 82, 83 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((2↑(𝑁 − 1))
· (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁)))) |
85 | 38, 64, 66 | divrecd 11684 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 2) = (𝐴 · (1 / 2))) |
86 | 76, 84, 85 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((2↑(𝑁 − 1))
· (𝐴 / (2↑𝑁))) = (𝐴 / 2)) |
87 | 86 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
(((2↑(𝑁 − 1))
· (𝐴 / (2↑𝑁))) ∈ ℤ ↔ (𝐴 / 2) ∈
ℤ)) |
88 | 56, 87 | sylibd 238 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → (𝐴 / 2) ∈ ℤ)) |
89 | 47, 88 | sylbid 239 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → (𝐴 / 2) ∈ ℤ)) |
90 | | zeo2 12337 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔
¬ ((𝐴 + 1) / 2) ∈
ℤ)) |
91 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 2) ∈ ℤ ↔
¬ ((𝐴 + 1) / 2) ∈
ℤ)) |
92 | 89, 91 | sylibd 238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → ¬ ((𝐴 + 1) / 2) ∈ ℤ)) |
93 | 92 | necon2ad 2957 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) / 2) ∈ ℤ →
(𝐴 mod (2↑𝑁)) ≠ 0)) |
94 | 30, 45, 93 | 3syld 60 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ
→ (𝐴 mod (2↑𝑁)) ≠ 0)) |
95 | 94 | ex 412 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (((𝐴 − 1) / 2) ∈ ℕ
→ (𝐴 mod (2↑𝑁)) ≠ 0))) |
96 | 95 | com23 86 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ
→ (𝑁 ∈ ℕ
→ (𝐴 mod (2↑𝑁)) ≠ 0))) |
97 | 96 | 3imp 1109 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 mod (2↑𝑁)) ≠ 0) |
98 | 97 | neneqd 2947 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ¬ (𝐴 mod
(2↑𝑁)) =
0) |
99 | 98 | iffalsed 4467 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ if((𝐴 mod
(2↑𝑁)) = 0,
((2↑𝑁) − 1), -1)
= -1) |
100 | 28, 99 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 − 1) mod
(2↑𝑁)) − (𝐴 mod (2↑𝑁))) = -1) |
101 | | neg1lt0 12020 |
. . . . . . . . . 10
⊢ -1 <
0 |
102 | | 2re 11977 |
. . . . . . . . . . . . 13
⊢ 2 ∈
ℝ |
103 | | 1lt2 12074 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
104 | | expgt1 13749 |
. . . . . . . . . . . . 13
⊢ ((2
∈ ℝ ∧ 𝑁
∈ ℕ ∧ 1 < 2) → 1 < (2↑𝑁)) |
105 | 102, 103,
104 | mp3an13 1450 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 1 <
(2↑𝑁)) |
106 | | 1red 10907 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → 1 ∈
ℝ) |
107 | 106, 7 | posdifd 11492 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (1 <
(2↑𝑁) ↔ 0 <
((2↑𝑁) −
1))) |
108 | 105, 107 | mpbid 231 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 0 <
((2↑𝑁) −
1)) |
109 | 106 | renegcld 11332 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → -1 ∈
ℝ) |
110 | | 0red 10909 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → 0 ∈
ℝ) |
111 | 7, 106 | resubcld 11333 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ →
((2↑𝑁) − 1)
∈ ℝ) |
112 | | lttr 10982 |
. . . . . . . . . . . 12
⊢ ((-1
∈ ℝ ∧ 0 ∈ ℝ ∧ ((2↑𝑁) − 1) ∈ ℝ) → ((-1
< 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1))) |
113 | 109, 110,
111, 112 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((-1 <
0 ∧ 0 < ((2↑𝑁)
− 1)) → -1 < ((2↑𝑁) − 1))) |
114 | 108, 113 | mpan2d 690 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (-1 <
0 → -1 < ((2↑𝑁) − 1))) |
115 | 101, 114 | mpi 20 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → -1 <
((2↑𝑁) −
1)) |
116 | 115 | 3ad2ant3 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ -1 < ((2↑𝑁)
− 1)) |
117 | 100, 116 | eqbrtrd 5092 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 − 1) mod
(2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1)) |
118 | 2, 10 | modcld 13523 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 mod (2↑𝑁)) ∈
ℝ) |
119 | | ltsubadd2b 45745 |
. . . . . . . 8
⊢ (((1
∈ ℝ ∧ (2↑𝑁) ∈ ℝ) ∧ ((𝐴 mod (2↑𝑁)) ∈ ℝ ∧ ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁))))) |
120 | 18, 8, 118, 16, 119 | syl22anc 835 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((((𝐴 − 1) mod
(2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁))))) |
121 | 117, 120 | mpbid 231 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (1 + ((𝐴 − 1)
mod (2↑𝑁))) <
((2↑𝑁) + (𝐴 mod (2↑𝑁)))) |
122 | | modid0 13545 |
. . . . . . . . . . . 12
⊢
((2↑𝑁) ∈
ℝ+ → ((2↑𝑁) mod (2↑𝑁)) = 0) |
123 | 10, 122 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((2↑𝑁) mod
(2↑𝑁)) =
0) |
124 | 123 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 mod
(2↑𝑁)) −
((2↑𝑁) mod
(2↑𝑁))) = ((𝐴 mod (2↑𝑁)) − 0)) |
125 | 118 | recnd 10934 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 mod (2↑𝑁)) ∈
ℂ) |
126 | 125 | subid1d 11251 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 mod
(2↑𝑁)) − 0) =
(𝐴 mod (2↑𝑁))) |
127 | 124, 126 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 mod
(2↑𝑁)) −
((2↑𝑁) mod
(2↑𝑁))) = (𝐴 mod (2↑𝑁))) |
128 | 127 | oveq1d 7270 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 mod
(2↑𝑁)) −
((2↑𝑁) mod
(2↑𝑁))) mod
(2↑𝑁)) = ((𝐴 mod (2↑𝑁)) mod (2↑𝑁))) |
129 | | modsubmodmod 13578 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧
(2↑𝑁) ∈ ℝ
∧ (2↑𝑁) ∈
ℝ+) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) |
130 | 2, 8, 10, 129 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 mod
(2↑𝑁)) −
((2↑𝑁) mod
(2↑𝑁))) mod
(2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) |
131 | | modabs2 13553 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧
(2↑𝑁) ∈
ℝ+) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁))) |
132 | 2, 10, 131 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 mod
(2↑𝑁)) mod
(2↑𝑁)) = (𝐴 mod (2↑𝑁))) |
133 | 128, 130,
132 | 3eqtr3d 2786 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) mod
(2↑𝑁)) = (𝐴 mod (2↑𝑁))) |
134 | 133 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((2↑𝑁) +
((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = ((2↑𝑁) + (𝐴 mod (2↑𝑁)))) |
135 | 121, 134 | breqtrrd 5098 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (1 + ((𝐴 − 1)
mod (2↑𝑁))) <
((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))) |
136 | 19, 20, 2, 135 | ltsub2dd 11518 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (𝐴 −
((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))) < (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁))))) |
137 | 31 | 3ad2ant1 1131 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 𝐴 ∈
ℂ) |
138 | 8 | recnd 10934 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℂ) |
139 | 11 | recnd 10934 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) mod
(2↑𝑁)) ∈
ℂ) |
140 | 137, 138,
139 | subsub4d 11293 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))))) |
141 | | 1cnd 10901 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ 1 ∈ ℂ) |
142 | 16 | recnd 10934 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 − 1) mod
(2↑𝑁)) ∈
ℂ) |
143 | 137, 141,
142 | subsub4d 11293 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 − 1)
− ((𝐴 − 1) mod
(2↑𝑁))) = (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁))))) |
144 | 136, 140,
143 | 3brtr4d 5102 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ ((𝐴 −
(2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) < ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁)))) |
145 | 12, 17, 10, 144 | ltdiv1dd 12758 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (((𝐴 −
(2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)) < (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁))) |
146 | 7 | recnd 10934 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ∈
ℂ) |
147 | 146 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ∈
ℂ) |
148 | 65 | a1i 11 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 2 ≠
0) |
149 | 77, 148, 5 | expne0d 13798 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
(2↑𝑁) ≠
0) |
150 | 149 | 3ad2ant3 1133 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (2↑𝑁) ≠
0) |
151 | | divsub1dir 45746 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧
(2↑𝑁) ∈ ℂ
∧ (2↑𝑁) ≠ 0)
→ ((𝐴 / (2↑𝑁)) − 1) = ((𝐴 − (2↑𝑁)) / (2↑𝑁))) |
152 | 151 | fveq2d 6760 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧
(2↑𝑁) ∈ ℂ
∧ (2↑𝑁) ≠ 0)
→ (⌊‘((𝐴 /
(2↑𝑁)) − 1)) =
(⌊‘((𝐴 −
(2↑𝑁)) / (2↑𝑁)))) |
153 | 137, 147,
150, 152 | syl3anc 1369 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((𝐴 /
(2↑𝑁)) − 1)) =
(⌊‘((𝐴 −
(2↑𝑁)) / (2↑𝑁)))) |
154 | | fldivmod 45752 |
. . . 4
⊢ (((𝐴 − (2↑𝑁)) ∈ ℝ ∧
(2↑𝑁) ∈
ℝ+) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁))) |
155 | 9, 10, 154 | syl2anc 583 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((𝐴
− (2↑𝑁)) /
(2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁))) |
156 | 153, 155 | eqtrd 2778 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((𝐴 /
(2↑𝑁)) − 1)) =
(((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁))) |
157 | | fldivmod 45752 |
. . 3
⊢ (((𝐴 − 1) ∈ ℝ ∧
(2↑𝑁) ∈
ℝ+) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁))) |
158 | 15, 10, 157 | syl2anc 583 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((𝐴
− 1) / (2↑𝑁))) =
(((𝐴 − 1) −
((𝐴 − 1) mod
(2↑𝑁))) /
(2↑𝑁))) |
159 | 145, 156,
158 | 3brtr4d 5102 |
1
⊢ ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ
∧ 𝑁 ∈ ℕ)
→ (⌊‘((𝐴 /
(2↑𝑁)) − 1))
< (⌊‘((𝐴
− 1) / (2↑𝑁)))) |