Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalflem1 Structured version   Visualization version   GIF version

Theorem dignn0flhalflem1 43428
Description: Lemma 1 for dignn0flhalf 43431. (Contributed by AV, 7-Jun-2012.)
Assertion
Ref Expression
dignn0flhalflem1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))

Proof of Theorem dignn0flhalflem1
StepHypRef Expression
1 zre 11732 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
213ad2ant1 1124 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 2rp 12142 . . . . . . . . 9 2 ∈ ℝ+
43a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
5 nnz 11751 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
64, 5rpexpcld 13353 . . . . . . 7 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ+)
76rpred 12181 . . . . . 6 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℝ)
873ad2ant3 1126 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ)
92, 8resubcld 10803 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − (2↑𝑁)) ∈ ℝ)
1063ad2ant3 1126 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
119, 10modcld 12993 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℝ)
129, 11resubcld 10803 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
13 peano2zm 11772 . . . . . 6 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℤ)
1413zred 11834 . . . . 5 (𝐴 ∈ ℤ → (𝐴 − 1) ∈ ℝ)
15143ad2ant1 1124 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − 1) ∈ ℝ)
1615, 10modcld 12993 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)
1715, 16resubcld 10803 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
18 1red 10377 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℝ)
1918, 16readdcld 10406 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) ∈ ℝ)
208, 11readdcld 10406 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) ∈ ℝ)
21 2nn 11448 . . . . . . . . . . . . . 14 2 ∈ ℕ
2221a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 2 ∈ ℕ)
23 nnnn0 11650 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2422, 23nnexpcld 13351 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℕ)
2524anim2i 610 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
26253adant2 1122 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ))
27 m1modmmod 43335 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (2↑𝑁) ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
2826, 27syl 17 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1))
29 nnz 11751 . . . . . . . . . . . . . . . 16 (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ)
3029a1i 11 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → ((𝐴 − 1) / 2) ∈ ℤ))
31 zcn 11733 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
32 xp1d2m1eqxm1d2 11636 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ ℂ → (((𝐴 + 1) / 2) − 1) = ((𝐴 − 1) / 2))
3332eqcomd 2784 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ ℂ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3431, 33syl 17 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3534adantr 474 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) / 2) = (((𝐴 + 1) / 2) − 1))
3635eleq1d 2844 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ ↔ (((𝐴 + 1) / 2) − 1) ∈ ℤ))
37 peano2z 11770 . . . . . . . . . . . . . . . . 17 ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ)
3831adantr 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
39 1cnd 10371 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
4038, 39addcld 10396 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 + 1) ∈ ℂ)
4140halfcld 11627 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 + 1) / 2) ∈ ℂ)
4241, 39npcand 10738 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) + 1) = ((𝐴 + 1) / 2))
4342eleq1d 2844 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((((𝐴 + 1) / 2) − 1) + 1) ∈ ℤ ↔ ((𝐴 + 1) / 2) ∈ ℤ))
4437, 43syl5ib 236 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴 + 1) / 2) − 1) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
4536, 44sylbid 232 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℤ → ((𝐴 + 1) / 2) ∈ ℤ))
46 mod0 12994 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
471, 6, 46syl2an 589 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 ↔ (𝐴 / (2↑𝑁)) ∈ ℤ))
4822nnzd 11833 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℤ)
49 nnm1nn0 11685 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
50 zexpcl 13193 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℕ0) → (2↑(𝑁 − 1)) ∈ ℤ)
5148, 49, 50syl2anc 579 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℤ)
5251adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℤ)
5352adantr 474 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (2↑(𝑁 − 1)) ∈ ℤ)
54 simpr 479 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → (𝐴 / (2↑𝑁)) ∈ ℤ)
5553, 54zmulcld 11840 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / (2↑𝑁)) ∈ ℤ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ)
5655ex 403 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ))
575adantl 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
5857zcnd 11835 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5939negcld 10721 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -1 ∈ ℂ)
6058, 39negsubd 10740 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 + -1) = (𝑁 − 1))
6160eqcomd 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 − 1) = (𝑁 + -1))
6258, 59, 61mvrladdd 10788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) − 𝑁) = -1)
6362oveq2d 6938 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = (2↑-1))
64 2cnd 11453 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℂ)
65 2ne0 11486 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ≠ 0
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ≠ 0)
67 1zzd 11760 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 1 ∈ ℤ)
685, 67zsubcld 11839 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℤ)
6968, 5jca 507 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
7069adantl 475 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ))
71 expsub 13226 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 ∈ ℂ ∧ 2 ≠ 0) ∧ ((𝑁 − 1) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
7264, 66, 70, 71syl21anc 828 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑((𝑁 − 1) − 𝑁)) = ((2↑(𝑁 − 1)) / (2↑𝑁)))
73 expn1 13188 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 ∈ ℂ → (2↑-1) = (1 / 2))
7464, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑-1) = (1 / 2))
7563, 72, 743eqtr3d 2822 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) / (2↑𝑁)) = (1 / 2))
7675oveq2d 6938 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))) = (𝐴 · (1 / 2)))
77 2cnd 11453 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑁 ∈ ℕ → 2 ∈ ℂ)
7877, 49expcld 13327 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → (2↑(𝑁 − 1)) ∈ ℂ)
7978adantl 475 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑(𝑁 − 1)) ∈ ℂ)
803a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 2 ∈ ℝ+)
8180, 57rpexpcld 13353 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℝ+)
8281rpcnne0d 12190 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0))
83 div12 11055 . . . . . . . . . . . . . . . . . . . . . 22 (((2↑(𝑁 − 1)) ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ ((2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0)) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8479, 38, 82, 83syl3anc 1439 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 · ((2↑(𝑁 − 1)) / (2↑𝑁))))
8538, 64, 66divrecd 11154 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 2) = (𝐴 · (1 / 2)))
8676, 84, 853eqtr4d 2824 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) = (𝐴 / 2))
8786eleq1d 2844 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((2↑(𝑁 − 1)) · (𝐴 / (2↑𝑁))) ∈ ℤ ↔ (𝐴 / 2) ∈ ℤ))
8856, 87sylibd 231 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / (2↑𝑁)) ∈ ℤ → (𝐴 / 2) ∈ ℤ))
8947, 88sylbid 232 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → (𝐴 / 2) ∈ ℤ))
90 zeo2 11816 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℤ → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9190adantr 474 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 2) ∈ ℤ ↔ ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9289, 91sylibd 231 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) = 0 → ¬ ((𝐴 + 1) / 2) ∈ ℤ))
9392necon2ad 2984 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 + 1) / 2) ∈ ℤ → (𝐴 mod (2↑𝑁)) ≠ 0))
9430, 45, 933syld 60 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0))
9594ex 403 . . . . . . . . . . . . 13 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ → (((𝐴 − 1) / 2) ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
9695com23 86 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (((𝐴 − 1) / 2) ∈ ℕ → (𝑁 ∈ ℕ → (𝐴 mod (2↑𝑁)) ≠ 0)))
97963imp 1098 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ≠ 0)
9897neneqd 2974 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ¬ (𝐴 mod (2↑𝑁)) = 0)
9998iffalsed 4318 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → if((𝐴 mod (2↑𝑁)) = 0, ((2↑𝑁) − 1), -1) = -1)
10028, 99eqtrd 2814 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) = -1)
101 neg1lt0 11499 . . . . . . . . . 10 -1 < 0
102 2re 11449 . . . . . . . . . . . . 13 2 ∈ ℝ
103 1lt2 11553 . . . . . . . . . . . . 13 1 < 2
104 expgt1 13216 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 2) → 1 < (2↑𝑁))
105102, 103, 104mp3an13 1525 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 1 < (2↑𝑁))
106 1red 10377 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → 1 ∈ ℝ)
107106, 7posdifd 10962 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (1 < (2↑𝑁) ↔ 0 < ((2↑𝑁) − 1)))
108105, 107mpbid 224 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 0 < ((2↑𝑁) − 1))
109106renegcld 10802 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → -1 ∈ ℝ)
110 0red 10380 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 0 ∈ ℝ)
1117, 106resubcld 10803 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((2↑𝑁) − 1) ∈ ℝ)
112 lttr 10453 . . . . . . . . . . . 12 ((-1 ∈ ℝ ∧ 0 ∈ ℝ ∧ ((2↑𝑁) − 1) ∈ ℝ) → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
113109, 110, 111, 112syl3anc 1439 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((-1 < 0 ∧ 0 < ((2↑𝑁) − 1)) → -1 < ((2↑𝑁) − 1)))
114108, 113mpan2d 684 . . . . . . . . . 10 (𝑁 ∈ ℕ → (-1 < 0 → -1 < ((2↑𝑁) − 1)))
115101, 114mpi 20 . . . . . . . . 9 (𝑁 ∈ ℕ → -1 < ((2↑𝑁) − 1))
1161153ad2ant3 1126 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → -1 < ((2↑𝑁) − 1))
117100, 116eqbrtrd 4908 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1))
1182, 10modcld 12993 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℝ)
119 ltsubadd2b 43325 . . . . . . . 8 (((1 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ) ∧ ((𝐴 mod (2↑𝑁)) ∈ ℝ ∧ ((𝐴 − 1) mod (2↑𝑁)) ∈ ℝ)) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
12018, 8, 118, 16, 119syl22anc 829 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((((𝐴 − 1) mod (2↑𝑁)) − (𝐴 mod (2↑𝑁))) < ((2↑𝑁) − 1) ↔ (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁)))))
121117, 120mpbid 224 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
122 modid0 13015 . . . . . . . . . . . 12 ((2↑𝑁) ∈ ℝ+ → ((2↑𝑁) mod (2↑𝑁)) = 0)
12310, 122syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) mod (2↑𝑁)) = 0)
124123oveq2d 6938 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = ((𝐴 mod (2↑𝑁)) − 0))
125118recnd 10405 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 mod (2↑𝑁)) ∈ ℂ)
126125subid1d 10723 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − 0) = (𝐴 mod (2↑𝑁)))
127124, 126eqtrd 2814 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) = (𝐴 mod (2↑𝑁)))
128127oveq1d 6937 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)))
129 modsubmodmod 13048 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
1302, 8, 10, 129syl3anc 1439 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 mod (2↑𝑁)) − ((2↑𝑁) mod (2↑𝑁))) mod (2↑𝑁)) = ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))
131 modabs2 13023 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
1322, 10, 131syl2anc 579 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
133128, 130, 1323eqtr3d 2822 . . . . . . 7 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) = (𝐴 mod (2↑𝑁)))
134133oveq2d 6938 . . . . . 6 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = ((2↑𝑁) + (𝐴 mod (2↑𝑁))))
135121, 134breqtrrd 4914 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (1 + ((𝐴 − 1) mod (2↑𝑁))) < ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁))))
13619, 20, 2, 135ltsub2dd 10988 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))) < (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
137313ad2ant1 1124 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
1388recnd 10405 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
13911recnd 10405 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) mod (2↑𝑁)) ∈ ℂ)
140137, 138, 139subsub4d 10765 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) = (𝐴 − ((2↑𝑁) + ((𝐴 − (2↑𝑁)) mod (2↑𝑁)))))
141 1cnd 10371 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℂ)
14216recnd 10405 . . . . 5 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) mod (2↑𝑁)) ∈ ℂ)
143137, 141, 142subsub4d 10765 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) = (𝐴 − (1 + ((𝐴 − 1) mod (2↑𝑁)))))
144136, 140, 1433brtr4d 4918 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) < ((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))))
14512, 17, 10, 144ltdiv1dd 12238 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)) < (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
1467recnd 10405 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ∈ ℂ)
1471463ad2ant3 1126 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ∈ ℂ)
14865a1i 11 . . . . . 6 (𝑁 ∈ ℕ → 2 ≠ 0)
14977, 148, 5expne0d 13333 . . . . 5 (𝑁 ∈ ℕ → (2↑𝑁) ≠ 0)
1501493ad2ant3 1126 . . . 4 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2↑𝑁) ≠ 0)
151 divsub1dir 43326 . . . . 5 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → ((𝐴 / (2↑𝑁)) − 1) = ((𝐴 − (2↑𝑁)) / (2↑𝑁)))
152151fveq2d 6450 . . . 4 ((𝐴 ∈ ℂ ∧ (2↑𝑁) ∈ ℂ ∧ (2↑𝑁) ≠ 0) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
153137, 147, 150, 152syl3anc 1439 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))))
154 fldivmod 43332 . . . 4 (((𝐴 − (2↑𝑁)) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
1559, 10, 154syl2anc 579 . . 3 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − (2↑𝑁)) / (2↑𝑁))) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
156153, 155eqtrd 2814 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) = (((𝐴 − (2↑𝑁)) − ((𝐴 − (2↑𝑁)) mod (2↑𝑁))) / (2↑𝑁)))
157 fldivmod 43332 . . 3 (((𝐴 − 1) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
15815, 10, 157syl2anc 579 . 2 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 − 1) / (2↑𝑁))) = (((𝐴 − 1) − ((𝐴 − 1) mod (2↑𝑁))) / (2↑𝑁)))
159145, 156, 1583brtr4d 4918 1 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝑁 ∈ ℕ) → (⌊‘((𝐴 / (2↑𝑁)) − 1)) < (⌊‘((𝐴 − 1) / (2↑𝑁))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  ifcif 4307   class class class wbr 4886  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277   < clt 10411  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  0cn0 11642  cz 11728  +crp 12137  cfl 12910   mod cmo 12987  cexp 13178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-sup 8636  df-inf 8637  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179
This theorem is referenced by:  dignn0flhalflem2  43429
  Copyright terms: Public domain W3C validator