| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | 0exp 14139 | . . . . . 6
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) =
0) | 
| 2 | 1 | oveq1d 7447 | . . . . 5
⊢ (𝑁 ∈ ℕ →
((0↑𝑁) gcd 0) = (0 gcd
0)) | 
| 3 | 2 | eqeq1d 2738 | . . . 4
⊢ (𝑁 ∈ ℕ →
(((0↑𝑁) gcd 0) = 1
↔ (0 gcd 0) = 1)) | 
| 4 |  | oveq1 7439 | . . . . . . 7
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) | 
| 5 |  | oveq12 7441 | . . . . . . 7
⊢ (((𝐴↑𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴↑𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0)) | 
| 6 | 4, 5 | sylan 580 | . . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴↑𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0)) | 
| 7 | 6 | eqeq1d 2738 | . . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1)) | 
| 8 |  | oveq12 7441 | . . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) | 
| 9 | 8 | eqeq1d 2738 | . . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) =
1)) | 
| 10 | 7, 9 | bibi12d 345 | . . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) =
1))) | 
| 11 | 3, 10 | syl5ibrcom 247 | . . 3
⊢ (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) | 
| 12 | 11 | 3ad2ant3 1135 | . 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) | 
| 13 |  | exprmfct 16742 | . . . . . . 7
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵)) | 
| 14 |  | simpl1 1191 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ) | 
| 15 |  | simpl3 1193 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ) | 
| 16 | 15 | nnnn0d 12589 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈
ℕ0) | 
| 17 |  | zexpcl 14118 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑𝑁) ∈
ℤ) | 
| 18 | 14, 16, 17 | syl2anc 584 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴↑𝑁) ∈ ℤ) | 
| 19 | 18 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴↑𝑁) ∈ ℤ) | 
| 20 |  | simpl2 1192 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ) | 
| 21 | 20 | adantr 480 | . . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) | 
| 22 |  | gcddvds 16541 | . . . . . . . . . . . . . . 15
⊢ (((𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵)) | 
| 23 | 19, 21, 22 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵)) | 
| 24 | 23 | simpld 494 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) | 
| 25 |  | prmz 16713 | . . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) | 
| 26 | 25 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) | 
| 27 |  | simpr 484 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 28 | 14 | zcnd 12725 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ) | 
| 29 |  | expeq0 14134 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | 
| 30 | 28, 15, 29 | syl2anc 584 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) | 
| 31 | 30 | anbi1d 631 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
| 32 | 27, 31 | mtbird 325 | . . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴↑𝑁) = 0 ∧ 𝐵 = 0)) | 
| 33 |  | gcdn0cl 16540 | . . . . . . . . . . . . . . . . 17
⊢ ((((𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴↑𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℕ) | 
| 34 | 18, 20, 32, 33 | syl21anc 837 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℕ) | 
| 35 | 34 | nnzd 12642 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ) | 
| 36 | 35 | adantr 480 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ) | 
| 37 |  | dvdstr 16332 | . . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℤ ∧ ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 38 | 26, 36, 19, 37 | syl3anc 1372 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 39 | 24, 38 | mpan2d 694 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 40 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) | 
| 41 |  | simpll1 1212 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) | 
| 42 | 15 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ) | 
| 43 |  | prmdvdsexp 16753 | . . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴↑𝑁) ↔ 𝑝 ∥ 𝐴)) | 
| 44 | 40, 41, 42, 43 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴↑𝑁) ↔ 𝑝 ∥ 𝐴)) | 
| 45 | 39, 44 | sylibd 239 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ 𝐴)) | 
| 46 | 23 | simprd 495 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) | 
| 47 |  | dvdstr 16332 | . . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) | 
| 48 | 26, 36, 21, 47 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) | 
| 49 | 46, 48 | mpan2d 694 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ 𝐵)) | 
| 50 | 45, 49 | jcad 512 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵))) | 
| 51 |  | dvdsgcd 16582 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) | 
| 52 | 26, 41, 21, 51 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) | 
| 53 |  | nprmdvds1 16744 | . . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℙ → ¬
𝑝 ∥
1) | 
| 54 |  | breq2 5146 | . . . . . . . . . . . . . 14
⊢ ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1)) | 
| 55 | 54 | notbid 318 | . . . . . . . . . . . . 13
⊢ ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1)) | 
| 56 | 53, 55 | syl5ibrcom 247 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵))) | 
| 57 | 56 | necon2ad 2954 | . . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 58 | 57 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 59 | 50, 52, 58 | 3syld 60 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 60 | 59 | rexlimdva 3154 | . . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) | 
| 61 |  | gcdn0cl 16540 | . . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 62 | 61 | 3adantl3 1168 | . . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) | 
| 63 |  | eluz2b3 12965 | . . . . . . . . . 10
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1)) | 
| 64 | 63 | baib 535 | . . . . . . . . 9
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ≠ 1)) | 
| 65 | 62, 64 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ≠ 1)) | 
| 66 | 60, 65 | sylibrd 259 | . . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) | 
| 67 | 13, 66 | syl5 34 | . . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
→ (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) | 
| 68 |  | exprmfct 16742 | . . . . . . 7
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝐴 gcd 𝐵)) | 
| 69 | 62 | nnzd 12642 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ) | 
| 70 | 69 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ) | 
| 71 |  | gcddvds 16541 | . . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 72 | 41, 21, 71 | syl2anc 584 | . . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) | 
| 73 | 72 | simpld 494 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴) | 
| 74 |  | iddvdsexp 16318 | . . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴↑𝑁)) | 
| 75 | 41, 42, 74 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴↑𝑁)) | 
| 76 | 70, 41, 19, 73, 75 | dvdstrd 16333 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) | 
| 77 |  | dvdstr 16332 | . . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 78 | 26, 70, 19, 77 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 79 | 76, 78 | mpan2d 694 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴↑𝑁))) | 
| 80 | 72 | simprd 495 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵) | 
| 81 |  | dvdstr 16332 | . . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) | 
| 82 | 26, 70, 21, 81 | syl3anc 1372 | . . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) | 
| 83 | 80, 82 | mpan2d 694 | . . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ 𝐵)) | 
| 84 | 79, 83 | jcad 512 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵))) | 
| 85 |  | dvdsgcd 16582 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) | 
| 86 | 26, 19, 21, 85 | syl3anc 1372 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) | 
| 87 |  | breq2 5146 | . . . . . . . . . . . . . 14
⊢ (((𝐴↑𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1)) | 
| 88 | 87 | notbid 318 | . . . . . . . . . . . . 13
⊢ (((𝐴↑𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1)) | 
| 89 | 53, 88 | syl5ibrcom 247 | . . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → (((𝐴↑𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) | 
| 90 | 89 | necon2ad 2954 | . . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 91 | 90 | adantl 481 | . . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 92 | 84, 86, 91 | 3syld 60 | . . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 93 | 92 | rexlimdva 3154 | . . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 94 |  | eluz2b3 12965 | . . . . . . . . . 10
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ (((𝐴↑𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 95 | 94 | baib 535 | . . . . . . . . 9
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ ℕ → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 96 | 34, 95 | syl 17 | . . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) | 
| 97 | 93, 96 | sylibrd 259 | . . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ∈
(ℤ≥‘2))) | 
| 98 | 68, 97 | syl5 34 | . . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
→ ((𝐴↑𝑁) gcd 𝐵) ∈
(ℤ≥‘2))) | 
| 99 | 67, 98 | impbid 212 | . . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) | 
| 100 | 99, 96, 65 | 3bitr3d 309 | . . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)) | 
| 101 | 100 | necon4bid 2985 | . . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) | 
| 102 | 101 | ex 412 | . 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬
(𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) | 
| 103 | 12, 102 | pm2.61d 179 | 1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) |