MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp Structured version   Visualization version   GIF version

Theorem rpexp 16769
Description: If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
rpexp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))

Proof of Theorem rpexp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0exp 14148 . . . . . 6 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
21oveq1d 7463 . . . . 5 (𝑁 ∈ ℕ → ((0↑𝑁) gcd 0) = (0 gcd 0))
32eqeq1d 2742 . . . 4 (𝑁 ∈ ℕ → (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1))
4 oveq1 7455 . . . . . . 7 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
5 oveq12 7457 . . . . . . 7 (((𝐴𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
64, 5sylan 579 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
76eqeq1d 2742 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1))
8 oveq12 7457 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
98eqeq1d 2742 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) = 1))
107, 9bibi12d 345 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1)))
113, 10syl5ibrcom 247 . . 3 (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
12113ad2ant3 1135 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
13 exprmfct 16751 . . . . . . 7 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵))
14 simpl1 1191 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
15 simpl3 1193 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ)
1615nnnn0d 12613 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ0)
17 zexpcl 14127 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
1814, 16, 17syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝑁) ∈ ℤ)
1918adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
20 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
2120adantr 480 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
22 gcddvds 16549 . . . . . . . . . . . . . . 15 (((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2319, 21, 22syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2423simpld 494 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁))
25 prmz 16722 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2625adantl 481 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
27 simpr 484 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2814zcnd 12748 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ)
29 expeq0 14143 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3028, 15, 29syl2anc 583 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3130anbi1d 630 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3227, 31mtbird 325 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0))
33 gcdn0cl 16548 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3418, 20, 32, 33syl21anc 837 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3534nnzd 12666 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
37 dvdstr 16342 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3826, 36, 19, 37syl3anc 1371 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3924, 38mpan2d 693 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
40 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
41 simpll1 1212 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
4215adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
43 prmdvdsexp 16762 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4440, 41, 42, 43syl3anc 1371 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4539, 44sylibd 239 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐴))
4623simprd 495 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ 𝐵)
47 dvdstr 16342 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4826, 36, 21, 47syl3anc 1371 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4946, 48mpan2d 693 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐵))
5045, 49jcad 512 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝑝𝐴𝑝𝐵)))
51 dvdsgcd 16591 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
5226, 41, 21, 51syl3anc 1371 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
53 nprmdvds1 16753 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
54 breq2 5170 . . . . . . . . . . . . . 14 ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
5554notbid 318 . . . . . . . . . . . . 13 ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
5653, 55syl5ibrcom 247 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵)))
5756necon2ad 2961 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5857adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5950, 52, 583syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
6059rexlimdva 3161 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
61 gcdn0cl 16548 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
62613adantl3 1168 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
63 eluz2b3 12987 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
6463baib 535 . . . . . . . . 9 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6562, 64syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6660, 65sylibrd 259 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
6713, 66syl5 34 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
68 exprmfct 16751 . . . . . . 7 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵))
6962nnzd 12666 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
7069adantr 480 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ)
71 gcddvds 16549 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7241, 21, 71syl2anc 583 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7372simpld 494 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴)
74 iddvdsexp 16328 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴𝑁))
7541, 42, 74syl2anc 583 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴𝑁))
7670, 41, 19, 73, 75dvdstrd 16343 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁))
77 dvdstr 16342 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
7826, 70, 19, 77syl3anc 1371 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
7976, 78mpan2d 693 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
8072simprd 495 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵)
81 dvdstr 16342 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8226, 70, 21, 81syl3anc 1371 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8380, 82mpan2d 693 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝𝐵))
8479, 83jcad 512 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵)))
85 dvdsgcd 16591 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
8626, 19, 21, 85syl3anc 1371 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
87 breq2 5170 . . . . . . . . . . . . . 14 (((𝐴𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1))
8887notbid 318 . . . . . . . . . . . . 13 (((𝐴𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
8953, 88syl5ibrcom 247 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (((𝐴𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
9089necon2ad 2961 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9190adantl 481 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9284, 86, 913syld 60 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9392rexlimdva 3161 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
94 eluz2b3 12987 . . . . . . . . . 10 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (((𝐴𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9594baib 535 . . . . . . . . 9 (((𝐴𝑁) gcd 𝐵) ∈ ℕ → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9634, 95syl 17 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9793, 96sylibrd 259 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
9868, 97syl5 34 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
9967, 98impbid 212 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
10099, 96, 653bitr3d 309 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))
101100necon4bid 2992 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
102101ex 412 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
10312, 102pm2.61d 179 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  cn 12293  2c2 12348  0cn0 12553  cz 12639  cuz 12903  cexp 14112  cdvds 16302   gcd cgcd 16540  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-prm 16719
This theorem is referenced by:  rpexp1i  16770  phiprmpw  16823  pockthlem  16952  logbgcd1irr  26855  aks4d1p8d3  42043  hashscontpow1  42078  flt4lem7  42614
  Copyright terms: Public domain W3C validator