![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlempns | Structured version Visualization version GIF version |
Description: Lemma for 4atexlem7 39787. (Contributed by NM, 23-Nov-2012.) |
Ref | Expression |
---|---|
4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
4thatlemslps.l | ⊢ ≤ = (le‘𝐾) |
4thatlemslps.j | ⊢ ∨ = (join‘𝐾) |
4thatlemslps.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
4atexlempns | ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
2 | 1 | 4atexlemk 39759 | . 2 ⊢ (𝜑 → 𝐾 ∈ HL) |
3 | 1 | 4atexlemp 39762 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
4 | 1 | 4atexlemq 39763 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
5 | 1 | 4atexlems 39764 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
6 | 1 | 4atexlemnslpq 39768 | . 2 ⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
7 | 4thatlemslps.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
8 | 4thatlemslps.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
9 | 4thatlemslps.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
10 | 7, 8, 9 | 4atlem0be 39307 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑆) |
11 | 2, 3, 4, 5, 6, 10 | syl131anc 1380 | 1 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 class class class wbr 5145 ‘cfv 6546 (class class class)co 7416 lecple 17268 joincjn 18331 Atomscatm 38974 HLchlt 39061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-lub 18366 df-join 18368 df-lat 18452 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 |
This theorem is referenced by: 4atexlemv 39777 4atexlemc 39781 4atexlemnclw 39782 4atexlemex2 39783 |
Copyright terms: Public domain | W3C validator |