| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 4atexlempns | Structured version Visualization version GIF version | ||
| Description: Lemma for 4atexlem7 40074. (Contributed by NM, 23-Nov-2012.) |
| Ref | Expression |
|---|---|
| 4thatlem.ph | ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 4thatlemslps.l | ⊢ ≤ = (le‘𝐾) |
| 4thatlemslps.j | ⊢ ∨ = (join‘𝐾) |
| 4thatlemslps.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| 4atexlempns | ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4thatlem.ph | . . 3 ⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) | |
| 2 | 1 | 4atexlemk 40046 | . 2 ⊢ (𝜑 → 𝐾 ∈ HL) |
| 3 | 1 | 4atexlemp 40049 | . 2 ⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 4 | 1 | 4atexlemq 40050 | . 2 ⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 5 | 1 | 4atexlems 40051 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 6 | 1 | 4atexlemnslpq 40055 | . 2 ⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 7 | 4thatlemslps.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 8 | 4thatlemslps.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 9 | 4thatlemslps.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 10 | 7, 8, 9 | 4atlem0be 39594 | . 2 ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝑃 ≠ 𝑆) |
| 11 | 2, 3, 4, 5, 6, 10 | syl131anc 1385 | 1 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 lecple 17187 joincjn 18236 Atomscatm 39261 HLchlt 39348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-lub 18269 df-join 18271 df-lat 18357 df-ats 39265 df-atl 39296 df-cvlat 39320 df-hlat 39349 |
| This theorem is referenced by: 4atexlemv 40064 4atexlemc 40068 4atexlemnclw 40069 4atexlemex2 40070 |
| Copyright terms: Public domain | W3C validator |