Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemc Structured version   Visualization version   GIF version

Theorem 4atexlemc 38010
Description: Lemma for 4atexlem7 38016. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemc (𝜑𝐶𝐴)

Proof of Theorem 4atexlemc
StepHypRef Expression
1 4thatlem0.c . . 3 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
2 4thatlem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
324atexlemkl 37998 . . . 4 (𝜑𝐾 ∈ Lat)
4 4thatlem0.j . . . . 5 = (join‘𝐾)
5 4thatlem0.a . . . . 5 𝐴 = (Atoms‘𝐾)
62, 4, 54atexlemqtb 38002 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
72, 4, 54atexlempsb 38001 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
8 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
9 4thatlem0.m . . . . 5 = (meet‘𝐾)
108, 9latmcom 18096 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
113, 6, 7, 10syl3anc 1369 . . 3 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
121, 11syl5eq 2791 . 2 (𝜑𝐶 = ((𝑃 𝑆) (𝑄 𝑇)))
1324atexlemk 37988 . . 3 (𝜑𝐾 ∈ HL)
1424atexlemp 37991 . . 3 (𝜑𝑃𝐴)
1524atexlems 37993 . . 3 (𝜑𝑆𝐴)
1624atexlemq 37992 . . 3 (𝜑𝑄𝐴)
1724atexlemt 37994 . . 3 (𝜑𝑇𝐴)
18 4thatlem0.l . . . 4 = (le‘𝐾)
192, 18, 4, 54atexlempns 38003 . . 3 (𝜑𝑃𝑆)
20 4thatlem0.h . . . . 5 𝐻 = (LHyp‘𝐾)
21 4thatlem0.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
22 4thatlem0.v . . . . 5 𝑉 = ((𝑃 𝑆) 𝑊)
232, 18, 4, 9, 5, 20, 21, 224atexlemntlpq 38009 . . . 4 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
2418, 4, 5atnlej2 37321 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑇𝑄)
2524necomd 2998 . . . 4 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑄𝑇)
2613, 17, 14, 16, 23, 25syl131anc 1381 . . 3 (𝜑𝑄𝑇)
2724atexlempnq 37996 . . . 4 (𝜑𝑃𝑄)
2824atexlemnslpq 37997 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
2918, 4, 54atlem0ae 37535 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑆))
3013, 14, 16, 15, 27, 28, 29syl132anc 1386 . . 3 (𝜑 → ¬ 𝑄 (𝑃 𝑆))
318, 5atbase 37230 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3217, 31syl 17 . . . 4 (𝜑𝑇 ∈ (Base‘𝐾))
332, 18, 4, 9, 5, 20, 214atexlemu 38005 . . . . 5 (𝜑𝑈𝐴)
342, 18, 4, 9, 5, 20, 21, 224atexlemv 38006 . . . . 5 (𝜑𝑉𝐴)
358, 4, 5hlatjcl 37308 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
3613, 33, 34, 35syl3anc 1369 . . . 4 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
378, 5atbase 37230 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3816, 37syl 17 . . . . 5 (𝜑𝑄 ∈ (Base‘𝐾))
398, 4latjcl 18072 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
403, 7, 38, 39syl3anc 1369 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
4124atexlemkc 37999 . . . . 5 (𝜑𝐾 ∈ CvLat)
422, 18, 4, 9, 5, 20, 21, 224atexlemunv 38007 . . . . 5 (𝜑𝑈𝑉)
4324atexlemutvt 37995 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
445, 18, 4cvlsupr4 37286 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
4541, 33, 34, 17, 42, 43, 44syl132anc 1386 . . . 4 (𝜑𝑇 (𝑈 𝑉))
468, 4, 5hlatjcl 37308 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4713, 14, 16, 46syl3anc 1369 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
482, 204atexlemwb 38000 . . . . . . . 8 (𝜑𝑊 ∈ (Base‘𝐾))
498, 18, 9latmle1 18097 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
503, 47, 48, 49syl3anc 1369 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
5121, 50eqbrtrid 5105 . . . . . 6 (𝜑𝑈 (𝑃 𝑄))
528, 18, 9latmle1 18097 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
533, 7, 48, 52syl3anc 1369 . . . . . . 7 (𝜑 → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
5422, 53eqbrtrid 5105 . . . . . 6 (𝜑𝑉 (𝑃 𝑆))
558, 5atbase 37230 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5633, 55syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
578, 5atbase 37230 . . . . . . . 8 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
5834, 57syl 17 . . . . . . 7 (𝜑𝑉 ∈ (Base‘𝐾))
598, 18, 4latjlej12 18088 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
603, 56, 47, 58, 7, 59syl122anc 1377 . . . . . 6 (𝜑 → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
6151, 54, 60mp2and 695 . . . . 5 (𝜑 → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆)))
624, 5hlatjass 37311 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
6313, 14, 16, 15, 62syl13anc 1370 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
648, 5atbase 37230 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
6514, 64syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
668, 5atbase 37230 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6715, 66syl 17 . . . . . . 7 (𝜑𝑆 ∈ (Base‘𝐾))
688, 4latj32 18118 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
693, 65, 38, 67, 68syl13anc 1370 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
708, 4latjjdi 18124 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
713, 65, 38, 67, 70syl13anc 1370 . . . . . 6 (𝜑 → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
7263, 69, 713eqtr3rd 2787 . . . . 5 (𝜑 → ((𝑃 𝑄) (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
7361, 72breqtrd 5096 . . . 4 (𝜑 → (𝑈 𝑉) ((𝑃 𝑆) 𝑄))
748, 18, 3, 32, 36, 40, 45, 73lattrd 18079 . . 3 (𝜑𝑇 ((𝑃 𝑆) 𝑄))
7518, 4, 9, 52atmat 37502 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑇𝐴𝑃𝑆) ∧ (𝑄𝑇 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ 𝑇 ((𝑃 𝑆) 𝑄))) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7613, 14, 15, 16, 17, 19, 26, 30, 74, 75syl333anc 1400 . 2 (𝜑 → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7712, 76eqeltrd 2839 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  meetcmee 17945  Latclat 18064  Atomscatm 37204  CvLatclc 37206  HLchlt 37291  LHypclh 37925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440  df-lhyp 37929
This theorem is referenced by:  4atexlemnclw  38011  4atexlemex2  38012  4atexlemcnd  38013
  Copyright terms: Public domain W3C validator