Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemc Structured version   Visualization version   GIF version

Theorem 4atexlemc 37209
Description: Lemma for 4atexlem7 37215. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemc (𝜑𝐶𝐴)

Proof of Theorem 4atexlemc
StepHypRef Expression
1 4thatlem0.c . . 3 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
2 4thatlem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
324atexlemkl 37197 . . . 4 (𝜑𝐾 ∈ Lat)
4 4thatlem0.j . . . . 5 = (join‘𝐾)
5 4thatlem0.a . . . . 5 𝐴 = (Atoms‘𝐾)
62, 4, 54atexlemqtb 37201 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
72, 4, 54atexlempsb 37200 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
8 eqid 2824 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
9 4thatlem0.m . . . . 5 = (meet‘𝐾)
108, 9latmcom 17688 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
113, 6, 7, 10syl3anc 1367 . . 3 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
121, 11syl5eq 2871 . 2 (𝜑𝐶 = ((𝑃 𝑆) (𝑄 𝑇)))
1324atexlemk 37187 . . 3 (𝜑𝐾 ∈ HL)
1424atexlemp 37190 . . 3 (𝜑𝑃𝐴)
1524atexlems 37192 . . 3 (𝜑𝑆𝐴)
1624atexlemq 37191 . . 3 (𝜑𝑄𝐴)
1724atexlemt 37193 . . 3 (𝜑𝑇𝐴)
18 4thatlem0.l . . . 4 = (le‘𝐾)
192, 18, 4, 54atexlempns 37202 . . 3 (𝜑𝑃𝑆)
20 4thatlem0.h . . . . 5 𝐻 = (LHyp‘𝐾)
21 4thatlem0.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
22 4thatlem0.v . . . . 5 𝑉 = ((𝑃 𝑆) 𝑊)
232, 18, 4, 9, 5, 20, 21, 224atexlemntlpq 37208 . . . 4 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
2418, 4, 5atnlej2 36520 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑇𝑄)
2524necomd 3074 . . . 4 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑄𝑇)
2613, 17, 14, 16, 23, 25syl131anc 1379 . . 3 (𝜑𝑄𝑇)
2724atexlempnq 37195 . . . 4 (𝜑𝑃𝑄)
2824atexlemnslpq 37196 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
2918, 4, 54atlem0ae 36734 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑆))
3013, 14, 16, 15, 27, 28, 29syl132anc 1384 . . 3 (𝜑 → ¬ 𝑄 (𝑃 𝑆))
318, 5atbase 36429 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3217, 31syl 17 . . . 4 (𝜑𝑇 ∈ (Base‘𝐾))
332, 18, 4, 9, 5, 20, 214atexlemu 37204 . . . . 5 (𝜑𝑈𝐴)
342, 18, 4, 9, 5, 20, 21, 224atexlemv 37205 . . . . 5 (𝜑𝑉𝐴)
358, 4, 5hlatjcl 36507 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
3613, 33, 34, 35syl3anc 1367 . . . 4 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
378, 5atbase 36429 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3816, 37syl 17 . . . . 5 (𝜑𝑄 ∈ (Base‘𝐾))
398, 4latjcl 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
403, 7, 38, 39syl3anc 1367 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
4124atexlemkc 37198 . . . . 5 (𝜑𝐾 ∈ CvLat)
422, 18, 4, 9, 5, 20, 21, 224atexlemunv 37206 . . . . 5 (𝜑𝑈𝑉)
4324atexlemutvt 37194 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
445, 18, 4cvlsupr4 36485 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
4541, 33, 34, 17, 42, 43, 44syl132anc 1384 . . . 4 (𝜑𝑇 (𝑈 𝑉))
468, 4, 5hlatjcl 36507 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4713, 14, 16, 46syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
482, 204atexlemwb 37199 . . . . . . . 8 (𝜑𝑊 ∈ (Base‘𝐾))
498, 18, 9latmle1 17689 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
503, 47, 48, 49syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
5121, 50eqbrtrid 5104 . . . . . 6 (𝜑𝑈 (𝑃 𝑄))
528, 18, 9latmle1 17689 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
533, 7, 48, 52syl3anc 1367 . . . . . . 7 (𝜑 → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
5422, 53eqbrtrid 5104 . . . . . 6 (𝜑𝑉 (𝑃 𝑆))
558, 5atbase 36429 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5633, 55syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
578, 5atbase 36429 . . . . . . . 8 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
5834, 57syl 17 . . . . . . 7 (𝜑𝑉 ∈ (Base‘𝐾))
598, 18, 4latjlej12 17680 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
603, 56, 47, 58, 7, 59syl122anc 1375 . . . . . 6 (𝜑 → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
6151, 54, 60mp2and 697 . . . . 5 (𝜑 → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆)))
624, 5hlatjass 36510 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
6313, 14, 16, 15, 62syl13anc 1368 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
648, 5atbase 36429 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
6514, 64syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
668, 5atbase 36429 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6715, 66syl 17 . . . . . . 7 (𝜑𝑆 ∈ (Base‘𝐾))
688, 4latj32 17710 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
693, 65, 38, 67, 68syl13anc 1368 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
708, 4latjjdi 17716 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
713, 65, 38, 67, 70syl13anc 1368 . . . . . 6 (𝜑 → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
7263, 69, 713eqtr3rd 2868 . . . . 5 (𝜑 → ((𝑃 𝑄) (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
7361, 72breqtrd 5095 . . . 4 (𝜑 → (𝑈 𝑉) ((𝑃 𝑆) 𝑄))
748, 18, 3, 32, 36, 40, 45, 73lattrd 17671 . . 3 (𝜑𝑇 ((𝑃 𝑆) 𝑄))
7518, 4, 9, 52atmat 36701 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑇𝐴𝑃𝑆) ∧ (𝑄𝑇 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ 𝑇 ((𝑃 𝑆) 𝑄))) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7613, 14, 15, 16, 17, 19, 26, 30, 74, 75syl333anc 1398 . 2 (𝜑 → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7712, 76eqeltrd 2916 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019   class class class wbr 5069  cfv 6358  (class class class)co 7159  Basecbs 16486  lecple 16575  joincjn 17557  meetcmee 17558  Latclat 17658  Atomscatm 36403  CvLatclc 36405  HLchlt 36490  LHypclh 37124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-proset 17541  df-poset 17559  df-plt 17571  df-lub 17587  df-glb 17588  df-join 17589  df-meet 17590  df-p0 17652  df-p1 17653  df-lat 17659  df-clat 17721  df-oposet 36316  df-ol 36318  df-oml 36319  df-covers 36406  df-ats 36407  df-atl 36438  df-cvlat 36462  df-hlat 36491  df-llines 36638  df-lplanes 36639  df-lhyp 37128
This theorem is referenced by:  4atexlemnclw  37210  4atexlemex2  37211  4atexlemcnd  37212
  Copyright terms: Public domain W3C validator