Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemc Structured version   Visualization version   GIF version

Theorem 4atexlemc 40036
Description: Lemma for 4atexlem7 40042. (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemc (𝜑𝐶𝐴)

Proof of Theorem 4atexlemc
StepHypRef Expression
1 4thatlem0.c . . 3 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
2 4thatlem.ph . . . . 5 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
324atexlemkl 40024 . . . 4 (𝜑𝐾 ∈ Lat)
4 4thatlem0.j . . . . 5 = (join‘𝐾)
5 4thatlem0.a . . . . 5 𝐴 = (Atoms‘𝐾)
62, 4, 54atexlemqtb 40028 . . . 4 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
72, 4, 54atexlempsb 40027 . . . 4 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
8 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
9 4thatlem0.m . . . . 5 = (meet‘𝐾)
108, 9latmcom 18398 . . . 4 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
113, 6, 7, 10syl3anc 1373 . . 3 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) = ((𝑃 𝑆) (𝑄 𝑇)))
121, 11eqtrid 2776 . 2 (𝜑𝐶 = ((𝑃 𝑆) (𝑄 𝑇)))
1324atexlemk 40014 . . 3 (𝜑𝐾 ∈ HL)
1424atexlemp 40017 . . 3 (𝜑𝑃𝐴)
1524atexlems 40019 . . 3 (𝜑𝑆𝐴)
1624atexlemq 40018 . . 3 (𝜑𝑄𝐴)
1724atexlemt 40020 . . 3 (𝜑𝑇𝐴)
18 4thatlem0.l . . . 4 = (le‘𝐾)
192, 18, 4, 54atexlempns 40029 . . 3 (𝜑𝑃𝑆)
20 4thatlem0.h . . . . 5 𝐻 = (LHyp‘𝐾)
21 4thatlem0.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
22 4thatlem0.v . . . . 5 𝑉 = ((𝑃 𝑆) 𝑊)
232, 18, 4, 9, 5, 20, 21, 224atexlemntlpq 40035 . . . 4 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
2418, 4, 5atnlej2 39347 . . . . 5 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑇𝑄)
2524necomd 2980 . . . 4 ((𝐾 ∈ HL ∧ (𝑇𝐴𝑃𝐴𝑄𝐴) ∧ ¬ 𝑇 (𝑃 𝑄)) → 𝑄𝑇)
2613, 17, 14, 16, 23, 25syl131anc 1385 . . 3 (𝜑𝑄𝑇)
2724atexlempnq 40022 . . . 4 (𝜑𝑃𝑄)
2824atexlemnslpq 40023 . . . 4 (𝜑 → ¬ 𝑆 (𝑃 𝑄))
2918, 4, 54atlem0ae 39561 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑄 (𝑃 𝑆))
3013, 14, 16, 15, 27, 28, 29syl132anc 1390 . . 3 (𝜑 → ¬ 𝑄 (𝑃 𝑆))
318, 5atbase 39255 . . . . 5 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
3217, 31syl 17 . . . 4 (𝜑𝑇 ∈ (Base‘𝐾))
332, 18, 4, 9, 5, 20, 214atexlemu 40031 . . . . 5 (𝜑𝑈𝐴)
342, 18, 4, 9, 5, 20, 21, 224atexlemv 40032 . . . . 5 (𝜑𝑉𝐴)
358, 4, 5hlatjcl 39333 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑉𝐴) → (𝑈 𝑉) ∈ (Base‘𝐾))
3613, 33, 34, 35syl3anc 1373 . . . 4 (𝜑 → (𝑈 𝑉) ∈ (Base‘𝐾))
378, 5atbase 39255 . . . . . 6 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3816, 37syl 17 . . . . 5 (𝜑𝑄 ∈ (Base‘𝐾))
398, 4latjcl 18374 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
403, 7, 38, 39syl3anc 1373 . . . 4 (𝜑 → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
4124atexlemkc 40025 . . . . 5 (𝜑𝐾 ∈ CvLat)
422, 18, 4, 9, 5, 20, 21, 224atexlemunv 40033 . . . . 5 (𝜑𝑈𝑉)
4324atexlemutvt 40021 . . . . 5 (𝜑 → (𝑈 𝑇) = (𝑉 𝑇))
445, 18, 4cvlsupr4 39311 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑈𝐴𝑉𝐴𝑇𝐴) ∧ (𝑈𝑉 ∧ (𝑈 𝑇) = (𝑉 𝑇))) → 𝑇 (𝑈 𝑉))
4541, 33, 34, 17, 42, 43, 44syl132anc 1390 . . . 4 (𝜑𝑇 (𝑈 𝑉))
468, 4, 5hlatjcl 39333 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
4713, 14, 16, 46syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
482, 204atexlemwb 40026 . . . . . . . 8 (𝜑𝑊 ∈ (Base‘𝐾))
498, 18, 9latmle1 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
503, 47, 48, 49syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
5121, 50eqbrtrid 5137 . . . . . 6 (𝜑𝑈 (𝑃 𝑄))
528, 18, 9latmle1 18399 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
533, 7, 48, 52syl3anc 1373 . . . . . . 7 (𝜑 → ((𝑃 𝑆) 𝑊) (𝑃 𝑆))
5422, 53eqbrtrid 5137 . . . . . 6 (𝜑𝑉 (𝑃 𝑆))
558, 5atbase 39255 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
5633, 55syl 17 . . . . . . 7 (𝜑𝑈 ∈ (Base‘𝐾))
578, 5atbase 39255 . . . . . . . 8 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
5834, 57syl 17 . . . . . . 7 (𝜑𝑉 ∈ (Base‘𝐾))
598, 18, 4latjlej12 18390 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾)) ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾))) → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
603, 56, 47, 58, 7, 59syl122anc 1381 . . . . . 6 (𝜑 → ((𝑈 (𝑃 𝑄) ∧ 𝑉 (𝑃 𝑆)) → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆))))
6151, 54, 60mp2and 699 . . . . 5 (𝜑 → (𝑈 𝑉) ((𝑃 𝑄) (𝑃 𝑆)))
624, 5hlatjass 39336 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑆𝐴)) → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
6313, 14, 16, 15, 62syl13anc 1374 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = (𝑃 (𝑄 𝑆)))
648, 5atbase 39255 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
6514, 64syl 17 . . . . . . 7 (𝜑𝑃 ∈ (Base‘𝐾))
668, 5atbase 39255 . . . . . . . 8 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
6715, 66syl 17 . . . . . . 7 (𝜑𝑆 ∈ (Base‘𝐾))
688, 4latj32 18420 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
693, 65, 38, 67, 68syl13anc 1374 . . . . . 6 (𝜑 → ((𝑃 𝑄) 𝑆) = ((𝑃 𝑆) 𝑄))
708, 4latjjdi 18426 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
713, 65, 38, 67, 70syl13anc 1374 . . . . . 6 (𝜑 → (𝑃 (𝑄 𝑆)) = ((𝑃 𝑄) (𝑃 𝑆)))
7263, 69, 713eqtr3rd 2773 . . . . 5 (𝜑 → ((𝑃 𝑄) (𝑃 𝑆)) = ((𝑃 𝑆) 𝑄))
7361, 72breqtrd 5128 . . . 4 (𝜑 → (𝑈 𝑉) ((𝑃 𝑆) 𝑄))
748, 18, 3, 32, 36, 40, 45, 73lattrd 18381 . . 3 (𝜑𝑇 ((𝑃 𝑆) 𝑄))
7518, 4, 9, 52atmat 39528 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) ∧ (𝑄𝐴𝑇𝐴𝑃𝑆) ∧ (𝑄𝑇 ∧ ¬ 𝑄 (𝑃 𝑆) ∧ 𝑇 ((𝑃 𝑆) 𝑄))) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7613, 14, 15, 16, 17, 19, 26, 30, 74, 75syl333anc 1404 . 2 (𝜑 → ((𝑃 𝑆) (𝑄 𝑇)) ∈ 𝐴)
7712, 76eqeltrd 2828 1 (𝜑𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  CvLatclc 39231  HLchlt 39316  LHypclh 39951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lhyp 39955
This theorem is referenced by:  4atexlemnclw  40037  4atexlemex2  40038  4atexlemcnd  40039
  Copyright terms: Public domain W3C validator