Proof of Theorem 4atexlemc
| Step | Hyp | Ref
| Expression |
| 1 | | 4thatlem0.c |
. . 3
⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
| 2 | | 4thatlem.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
| 3 | 2 | 4atexlemkl 40059 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Lat) |
| 4 | | 4thatlem0.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
| 5 | | 4thatlem0.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 6 | 2, 4, 5 | 4atexlemqtb 40063 |
. . . 4
⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
| 7 | 2, 4, 5 | 4atexlempsb 40062 |
. . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
| 8 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 9 | | 4thatlem0.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 10 | 8, 9 | latmcom 18508 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
| 11 | 3, 6, 7, 10 | syl3anc 1373 |
. . 3
⊢ (𝜑 → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
| 12 | 1, 11 | eqtrid 2789 |
. 2
⊢ (𝜑 → 𝐶 = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
| 13 | 2 | 4atexlemk 40049 |
. . 3
⊢ (𝜑 → 𝐾 ∈ HL) |
| 14 | 2 | 4atexlemp 40052 |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
| 15 | 2 | 4atexlems 40054 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
| 16 | 2 | 4atexlemq 40053 |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
| 17 | 2 | 4atexlemt 40055 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
| 18 | | 4thatlem0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 19 | 2, 18, 4, 5 | 4atexlempns 40064 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑆) |
| 20 | | 4thatlem0.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 21 | | 4thatlem0.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| 22 | | 4thatlem0.v |
. . . . 5
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
| 23 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemntlpq 40070 |
. . . 4
⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
| 24 | 18, 4, 5 | atnlej2 39382 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑄) |
| 25 | 24 | necomd 2996 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ≠ 𝑇) |
| 26 | 13, 17, 14, 16, 23, 25 | syl131anc 1385 |
. . 3
⊢ (𝜑 → 𝑄 ≠ 𝑇) |
| 27 | 2 | 4atexlempnq 40057 |
. . . 4
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
| 28 | 2 | 4atexlemnslpq 40058 |
. . . 4
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
| 29 | 18, 4, 5 | 4atlem0ae 39596 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑆)) |
| 30 | 13, 14, 16, 15, 27, 28, 29 | syl132anc 1390 |
. . 3
⊢ (𝜑 → ¬ 𝑄 ≤ (𝑃 ∨ 𝑆)) |
| 31 | 8, 5 | atbase 39290 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
| 32 | 17, 31 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
| 33 | 2, 18, 4, 9, 5, 20,
21 | 4atexlemu 40066 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
| 34 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemv 40067 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
| 35 | 8, 4, 5 | hlatjcl 39368 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 36 | 13, 33, 34, 35 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
| 37 | 8, 5 | atbase 39290 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 38 | 16, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
| 39 | 8, 4 | latjcl 18484 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Base‘𝐾)) |
| 40 | 3, 7, 38, 39 | syl3anc 1373 |
. . . 4
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Base‘𝐾)) |
| 41 | 2 | 4atexlemkc 40060 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ CvLat) |
| 42 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemunv 40068 |
. . . . 5
⊢ (𝜑 → 𝑈 ≠ 𝑉) |
| 43 | 2 | 4atexlemutvt 40056 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
| 44 | 5, 18, 4 | cvlsupr4 39346 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
| 45 | 41, 33, 34, 17, 42, 43, 44 | syl132anc 1390 |
. . . 4
⊢ (𝜑 → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
| 46 | 8, 4, 5 | hlatjcl 39368 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 47 | 13, 14, 16, 46 | syl3anc 1373 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
| 48 | 2, 20 | 4atexlemwb 40061 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
| 49 | 8, 18, 9 | latmle1 18509 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 50 | 3, 47, 48, 49 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
| 51 | 21, 50 | eqbrtrid 5178 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
| 52 | 8, 18, 9 | latmle1 18509 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
| 53 | 3, 7, 48, 52 | syl3anc 1373 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
| 54 | 22, 53 | eqbrtrid 5178 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≤ (𝑃 ∨ 𝑆)) |
| 55 | 8, 5 | atbase 39290 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
| 56 | 33, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
| 57 | 8, 5 | atbase 39290 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
| 58 | 34, 57 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ (Base‘𝐾)) |
| 59 | 8, 18, 4 | latjlej12 18500 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ (𝑃 ∨ 𝑆)) → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)))) |
| 60 | 3, 56, 47, 58, 7, 59 | syl122anc 1381 |
. . . . . 6
⊢ (𝜑 → ((𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ (𝑃 ∨ 𝑆)) → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)))) |
| 61 | 51, 54, 60 | mp2and 699 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
| 62 | 4, 5 | hlatjass 39371 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
| 63 | 13, 14, 16, 15, 62 | syl13anc 1374 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
| 64 | 8, 5 | atbase 39290 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 65 | 14, 64 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
| 66 | 8, 5 | atbase 39290 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
| 67 | 15, 66 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
| 68 | 8, 4 | latj32 18530 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 69 | 3, 65, 38, 67, 68 | syl13anc 1374 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 70 | 8, 4 | latjjdi 18536 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑃 ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
| 71 | 3, 65, 38, 67, 70 | syl13anc 1374 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
| 72 | 63, 69, 71 | 3eqtr3rd 2786 |
. . . . 5
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 73 | 61, 72 | breqtrd 5169 |
. . . 4
⊢ (𝜑 → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 74 | 8, 18, 3, 32, 36, 40, 45, 73 | lattrd 18491 |
. . 3
⊢ (𝜑 → 𝑇 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
| 75 | 18, 4, 9, 5 | 2atmat 39563 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆) ∧ (𝑄 ≠ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ 𝑇 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ 𝐴) |
| 76 | 13, 14, 15, 16, 17, 19, 26, 30, 74, 75 | syl333anc 1404 |
. 2
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ 𝐴) |
| 77 | 12, 76 | eqeltrd 2841 |
1
⊢ (𝜑 → 𝐶 ∈ 𝐴) |