Proof of Theorem 4atexlemc
Step | Hyp | Ref
| Expression |
1 | | 4thatlem0.c |
. . 3
⊢ 𝐶 = ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) |
2 | | 4thatlem.ph |
. . . . 5
⊢ (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑆 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) ∧ (𝑇 ∈ 𝐴 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)))) |
3 | 2 | 4atexlemkl 38071 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ Lat) |
4 | | 4thatlem0.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
5 | | 4thatlem0.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
6 | 2, 4, 5 | 4atexlemqtb 38075 |
. . . 4
⊢ (𝜑 → (𝑄 ∨ 𝑇) ∈ (Base‘𝐾)) |
7 | 2, 4, 5 | 4atexlempsb 38074 |
. . . 4
⊢ (𝜑 → (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) |
8 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
9 | | 4thatlem0.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
10 | 8, 9 | latmcom 18181 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾)) → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
11 | 3, 6, 7, 10 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝑄 ∨ 𝑇) ∧ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
12 | 1, 11 | eqtrid 2790 |
. 2
⊢ (𝜑 → 𝐶 = ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇))) |
13 | 2 | 4atexlemk 38061 |
. . 3
⊢ (𝜑 → 𝐾 ∈ HL) |
14 | 2 | 4atexlemp 38064 |
. . 3
⊢ (𝜑 → 𝑃 ∈ 𝐴) |
15 | 2 | 4atexlems 38066 |
. . 3
⊢ (𝜑 → 𝑆 ∈ 𝐴) |
16 | 2 | 4atexlemq 38065 |
. . 3
⊢ (𝜑 → 𝑄 ∈ 𝐴) |
17 | 2 | 4atexlemt 38067 |
. . 3
⊢ (𝜑 → 𝑇 ∈ 𝐴) |
18 | | 4thatlem0.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
19 | 2, 18, 4, 5 | 4atexlempns 38076 |
. . 3
⊢ (𝜑 → 𝑃 ≠ 𝑆) |
20 | | 4thatlem0.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
21 | | 4thatlem0.u |
. . . . 5
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
22 | | 4thatlem0.v |
. . . . 5
⊢ 𝑉 = ((𝑃 ∨ 𝑆) ∧ 𝑊) |
23 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemntlpq 38082 |
. . . 4
⊢ (𝜑 → ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) |
24 | 18, 4, 5 | atnlej2 37394 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑇 ≠ 𝑄) |
25 | 24 | necomd 2999 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) → 𝑄 ≠ 𝑇) |
26 | 13, 17, 14, 16, 23, 25 | syl131anc 1382 |
. . 3
⊢ (𝜑 → 𝑄 ≠ 𝑇) |
27 | 2 | 4atexlempnq 38069 |
. . . 4
⊢ (𝜑 → 𝑃 ≠ 𝑄) |
28 | 2 | 4atexlemnslpq 38070 |
. . . 4
⊢ (𝜑 → ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) |
29 | 18, 4, 5 | 4atlem0ae 37608 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑄 ≤ (𝑃 ∨ 𝑆)) |
30 | 13, 14, 16, 15, 27, 28, 29 | syl132anc 1387 |
. . 3
⊢ (𝜑 → ¬ 𝑄 ≤ (𝑃 ∨ 𝑆)) |
31 | 8, 5 | atbase 37303 |
. . . . 5
⊢ (𝑇 ∈ 𝐴 → 𝑇 ∈ (Base‘𝐾)) |
32 | 17, 31 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (Base‘𝐾)) |
33 | 2, 18, 4, 9, 5, 20,
21 | 4atexlemu 38078 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝐴) |
34 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemv 38079 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝐴) |
35 | 8, 4, 5 | hlatjcl 37381 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴) → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
36 | 13, 33, 34, 35 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝑈 ∨ 𝑉) ∈ (Base‘𝐾)) |
37 | 8, 5 | atbase 37303 |
. . . . . 6
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
38 | 16, 37 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (Base‘𝐾)) |
39 | 8, 4 | latjcl 18157 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Base‘𝐾)) |
40 | 3, 7, 38, 39 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Base‘𝐾)) |
41 | 2 | 4atexlemkc 38072 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ CvLat) |
42 | 2, 18, 4, 9, 5, 20,
21, 22 | 4atexlemunv 38080 |
. . . . 5
⊢ (𝜑 → 𝑈 ≠ 𝑉) |
43 | 2 | 4atexlemutvt 38068 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇)) |
44 | 5, 18, 4 | cvlsupr4 37359 |
. . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ≠ 𝑉 ∧ (𝑈 ∨ 𝑇) = (𝑉 ∨ 𝑇))) → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
45 | 41, 33, 34, 17, 42, 43, 44 | syl132anc 1387 |
. . . 4
⊢ (𝜑 → 𝑇 ≤ (𝑈 ∨ 𝑉)) |
46 | 8, 4, 5 | hlatjcl 37381 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
47 | 13, 14, 16, 46 | syl3anc 1370 |
. . . . . . . 8
⊢ (𝜑 → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
48 | 2, 20 | 4atexlemwb 38073 |
. . . . . . . 8
⊢ (𝜑 → 𝑊 ∈ (Base‘𝐾)) |
49 | 8, 18, 9 | latmle1 18182 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
50 | 3, 47, 48, 49 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∧ 𝑊) ≤ (𝑃 ∨ 𝑄)) |
51 | 21, 50 | eqbrtrid 5109 |
. . . . . 6
⊢ (𝜑 → 𝑈 ≤ (𝑃 ∨ 𝑄)) |
52 | 8, 18, 9 | latmle1 18182 |
. . . . . . . 8
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
53 | 3, 7, 48, 52 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ 𝑊) ≤ (𝑃 ∨ 𝑆)) |
54 | 22, 53 | eqbrtrid 5109 |
. . . . . 6
⊢ (𝜑 → 𝑉 ≤ (𝑃 ∨ 𝑆)) |
55 | 8, 5 | atbase 37303 |
. . . . . . . 8
⊢ (𝑈 ∈ 𝐴 → 𝑈 ∈ (Base‘𝐾)) |
56 | 33, 55 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ (Base‘𝐾)) |
57 | 8, 5 | atbase 37303 |
. . . . . . . 8
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
58 | 34, 57 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑉 ∈ (Base‘𝐾)) |
59 | 8, 18, 4 | latjlej12 18173 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) ∧ (𝑉 ∈ (Base‘𝐾) ∧ (𝑃 ∨ 𝑆) ∈ (Base‘𝐾))) → ((𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ (𝑃 ∨ 𝑆)) → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)))) |
60 | 3, 56, 47, 58, 7, 59 | syl122anc 1378 |
. . . . . 6
⊢ (𝜑 → ((𝑈 ≤ (𝑃 ∨ 𝑄) ∧ 𝑉 ≤ (𝑃 ∨ 𝑆)) → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)))) |
61 | 51, 54, 60 | mp2and 696 |
. . . . 5
⊢ (𝜑 → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
62 | 4, 5 | hlatjass 37384 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
63 | 13, 14, 16, 15, 62 | syl13anc 1371 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑆) = (𝑃 ∨ (𝑄 ∨ 𝑆))) |
64 | 8, 5 | atbase 37303 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
65 | 14, 64 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ (Base‘𝐾)) |
66 | 8, 5 | atbase 37303 |
. . . . . . . 8
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
67 | 15, 66 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑆 ∈ (Base‘𝐾)) |
68 | 8, 4 | latj32 18203 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → ((𝑃 ∨ 𝑄) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
69 | 3, 65, 38, 67, 68 | syl13anc 1371 |
. . . . . 6
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ 𝑆) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
70 | 8, 4 | latjjdi 18209 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (𝑃 ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
71 | 3, 65, 38, 67, 70 | syl13anc 1371 |
. . . . . 6
⊢ (𝜑 → (𝑃 ∨ (𝑄 ∨ 𝑆)) = ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆))) |
72 | 63, 69, 71 | 3eqtr3rd 2787 |
. . . . 5
⊢ (𝜑 → ((𝑃 ∨ 𝑄) ∨ (𝑃 ∨ 𝑆)) = ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
73 | 61, 72 | breqtrd 5100 |
. . . 4
⊢ (𝜑 → (𝑈 ∨ 𝑉) ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
74 | 8, 18, 3, 32, 36, 40, 45, 73 | lattrd 18164 |
. . 3
⊢ (𝜑 → 𝑇 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄)) |
75 | 18, 4, 9, 5 | 2atmat 37575 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆) ∧ (𝑄 ≠ 𝑇 ∧ ¬ 𝑄 ≤ (𝑃 ∨ 𝑆) ∧ 𝑇 ≤ ((𝑃 ∨ 𝑆) ∨ 𝑄))) → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ 𝐴) |
76 | 13, 14, 15, 16, 17, 19, 26, 30, 74, 75 | syl333anc 1401 |
. 2
⊢ (𝜑 → ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ 𝐴) |
77 | 12, 76 | eqeltrd 2839 |
1
⊢ (𝜑 → 𝐶 ∈ 𝐴) |