Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex2 Structured version   Visualization version   GIF version

Theorem 4atexlemex2 40065
Description: Lemma for 4atexlem7 40069. Show that when 𝐶𝑆, 𝐶 satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemex2 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐶   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝑇(𝑧)   𝑈(𝑧)   𝐻(𝑧)   𝐾(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem 4atexlemex2
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
9 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
101, 2, 3, 4, 5, 6, 7, 8, 94atexlemc 40063 . . 3 (𝜑𝐶𝐴)
1110adantr 480 . 2 ((𝜑𝐶𝑆) → 𝐶𝐴)
121, 2, 3, 4, 5, 6, 7, 8, 94atexlemnclw 40064 . . 3 (𝜑 → ¬ 𝐶 𝑊)
1312adantr 480 . 2 ((𝜑𝐶𝑆) → ¬ 𝐶 𝑊)
141, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 40062 . . . . 5 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
15 id 22 . . . . . . . . . . 11 (𝐶 = 𝑃𝐶 = 𝑃)
169, 15eqtr3id 2778 . . . . . . . . . 10 (𝐶 = 𝑃 → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1716adantl 481 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1814atexlemkl 40051 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Lat)
191, 3, 54atexlemqtb 40055 . . . . . . . . . . . 12 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
201, 3, 54atexlempsb 40054 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
21 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2221, 2, 4latmle1 18423 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2318, 19, 20, 22syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2414atexlemk 40041 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
2514atexlemq 40045 . . . . . . . . . . . 12 (𝜑𝑄𝐴)
2614atexlemt 40047 . . . . . . . . . . . 12 (𝜑𝑇𝐴)
273, 5hlatjcom 39361 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
2923, 28breqtrd 5133 . . . . . . . . . 10 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3029adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3117, 30eqbrtrrd 5131 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → 𝑃 (𝑇 𝑄))
3214atexlemkc 40052 . . . . . . . . . 10 (𝜑𝐾 ∈ CvLat)
3314atexlemp 40044 . . . . . . . . . 10 (𝜑𝑃𝐴)
3414atexlempnq 40049 . . . . . . . . . 10 (𝜑𝑃𝑄)
352, 3, 5cvlatexch2 39330 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑇𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3632, 33, 26, 25, 34, 35syl131anc 1385 . . . . . . . . 9 (𝜑 → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3736adantr 480 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3831, 37mpd 15 . . . . . . 7 ((𝜑𝐶 = 𝑃) → 𝑇 (𝑃 𝑄))
3938ex 412 . . . . . 6 (𝜑 → (𝐶 = 𝑃𝑇 (𝑃 𝑄)))
4039necon3bd 2939 . . . . 5 (𝜑 → (¬ 𝑇 (𝑃 𝑄) → 𝐶𝑃))
4114, 40mpd 15 . . . 4 (𝜑𝐶𝑃)
4241adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑃)
43 simpr 484 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑆)
4421, 2, 4latmle2 18424 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
4518, 19, 20, 44syl3anc 1373 . . . . 5 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
469, 45eqbrtrid 5142 . . . 4 (𝜑𝐶 (𝑃 𝑆))
4746adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶 (𝑃 𝑆))
4814atexlems 40046 . . . . 5 (𝜑𝑆𝐴)
491, 2, 3, 54atexlempns 40056 . . . . 5 (𝜑𝑃𝑆)
505, 2, 3cvlsupr2 39336 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝐶𝐴) ∧ 𝑃𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5132, 33, 48, 10, 49, 50syl131anc 1385 . . . 4 (𝜑 → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5251adantr 480 . . 3 ((𝜑𝐶𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5342, 43, 47, 52mpbir3and 1343 . 2 ((𝜑𝐶𝑆) → (𝑃 𝐶) = (𝑆 𝐶))
54 breq1 5110 . . . . 5 (𝑧 = 𝐶 → (𝑧 𝑊𝐶 𝑊))
5554notbid 318 . . . 4 (𝑧 = 𝐶 → (¬ 𝑧 𝑊 ↔ ¬ 𝐶 𝑊))
56 oveq2 7395 . . . . 5 (𝑧 = 𝐶 → (𝑃 𝑧) = (𝑃 𝐶))
57 oveq2 7395 . . . . 5 (𝑧 = 𝐶 → (𝑆 𝑧) = (𝑆 𝐶))
5856, 57eqeq12d 2745 . . . 4 (𝑧 = 𝐶 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝐶) = (𝑆 𝐶)))
5955, 58anbi12d 632 . . 3 (𝑧 = 𝐶 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))))
6059rspcev 3588 . 2 ((𝐶𝐴 ∧ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6111, 13, 53, 60syl12anc 836 1 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  joincjn 18272  meetcmee 18273  Latclat 18390  Atomscatm 39256  CvLatclc 39258  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lhyp 39982
This theorem is referenced by:  4atexlemex4  40067  4atexlemex6  40068
  Copyright terms: Public domain W3C validator