Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex2 Structured version   Visualization version   GIF version

Theorem 4atexlemex2 40058
Description: Lemma for 4atexlem7 40062. Show that when 𝐶𝑆, 𝐶 satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemex2 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐶   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝑇(𝑧)   𝑈(𝑧)   𝐻(𝑧)   𝐾(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem 4atexlemex2
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
9 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
101, 2, 3, 4, 5, 6, 7, 8, 94atexlemc 40056 . . 3 (𝜑𝐶𝐴)
1110adantr 480 . 2 ((𝜑𝐶𝑆) → 𝐶𝐴)
121, 2, 3, 4, 5, 6, 7, 8, 94atexlemnclw 40057 . . 3 (𝜑 → ¬ 𝐶 𝑊)
1312adantr 480 . 2 ((𝜑𝐶𝑆) → ¬ 𝐶 𝑊)
141, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 40055 . . . . 5 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
15 id 22 . . . . . . . . . . 11 (𝐶 = 𝑃𝐶 = 𝑃)
169, 15eqtr3id 2778 . . . . . . . . . 10 (𝐶 = 𝑃 → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1716adantl 481 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1814atexlemkl 40044 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Lat)
191, 3, 54atexlemqtb 40048 . . . . . . . . . . . 12 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
201, 3, 54atexlempsb 40047 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
21 eqid 2729 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2221, 2, 4latmle1 18405 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2318, 19, 20, 22syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2414atexlemk 40034 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
2514atexlemq 40038 . . . . . . . . . . . 12 (𝜑𝑄𝐴)
2614atexlemt 40040 . . . . . . . . . . . 12 (𝜑𝑇𝐴)
273, 5hlatjcom 39354 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
2923, 28breqtrd 5128 . . . . . . . . . 10 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3029adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3117, 30eqbrtrrd 5126 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → 𝑃 (𝑇 𝑄))
3214atexlemkc 40045 . . . . . . . . . 10 (𝜑𝐾 ∈ CvLat)
3314atexlemp 40037 . . . . . . . . . 10 (𝜑𝑃𝐴)
3414atexlempnq 40042 . . . . . . . . . 10 (𝜑𝑃𝑄)
352, 3, 5cvlatexch2 39323 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑇𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3632, 33, 26, 25, 34, 35syl131anc 1385 . . . . . . . . 9 (𝜑 → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3736adantr 480 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3831, 37mpd 15 . . . . . . 7 ((𝜑𝐶 = 𝑃) → 𝑇 (𝑃 𝑄))
3938ex 412 . . . . . 6 (𝜑 → (𝐶 = 𝑃𝑇 (𝑃 𝑄)))
4039necon3bd 2939 . . . . 5 (𝜑 → (¬ 𝑇 (𝑃 𝑄) → 𝐶𝑃))
4114, 40mpd 15 . . . 4 (𝜑𝐶𝑃)
4241adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑃)
43 simpr 484 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑆)
4421, 2, 4latmle2 18406 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
4518, 19, 20, 44syl3anc 1373 . . . . 5 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
469, 45eqbrtrid 5137 . . . 4 (𝜑𝐶 (𝑃 𝑆))
4746adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶 (𝑃 𝑆))
4814atexlems 40039 . . . . 5 (𝜑𝑆𝐴)
491, 2, 3, 54atexlempns 40049 . . . . 5 (𝜑𝑃𝑆)
505, 2, 3cvlsupr2 39329 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝐶𝐴) ∧ 𝑃𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5132, 33, 48, 10, 49, 50syl131anc 1385 . . . 4 (𝜑 → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5251adantr 480 . . 3 ((𝜑𝐶𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5342, 43, 47, 52mpbir3and 1343 . 2 ((𝜑𝐶𝑆) → (𝑃 𝐶) = (𝑆 𝐶))
54 breq1 5105 . . . . 5 (𝑧 = 𝐶 → (𝑧 𝑊𝐶 𝑊))
5554notbid 318 . . . 4 (𝑧 = 𝐶 → (¬ 𝑧 𝑊 ↔ ¬ 𝐶 𝑊))
56 oveq2 7377 . . . . 5 (𝑧 = 𝐶 → (𝑃 𝑧) = (𝑃 𝐶))
57 oveq2 7377 . . . . 5 (𝑧 = 𝐶 → (𝑆 𝑧) = (𝑆 𝐶))
5856, 57eqeq12d 2745 . . . 4 (𝑧 = 𝐶 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝐶) = (𝑆 𝐶)))
5955, 58anbi12d 632 . . 3 (𝑧 = 𝐶 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))))
6059rspcev 3585 . 2 ((𝐶𝐴 ∧ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6111, 13, 53, 60syl12anc 836 1 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18252  meetcmee 18253  Latclat 18372  Atomscatm 39249  CvLatclc 39251  HLchlt 39336  LHypclh 39971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lhyp 39975
This theorem is referenced by:  4atexlemex4  40060  4atexlemex6  40061
  Copyright terms: Public domain W3C validator