Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atexlemex2 Structured version   Visualization version   GIF version

Theorem 4atexlemex2 40072
Description: Lemma for 4atexlem7 40076. Show that when 𝐶𝑆, 𝐶 satisfies the existence condition of the consequent. (Contributed by NM, 25-Nov-2012.)
Hypotheses
Ref Expression
4thatlem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
4thatlem0.l = (le‘𝐾)
4thatlem0.j = (join‘𝐾)
4thatlem0.m = (meet‘𝐾)
4thatlem0.a 𝐴 = (Atoms‘𝐾)
4thatlem0.h 𝐻 = (LHyp‘𝐾)
4thatlem0.u 𝑈 = ((𝑃 𝑄) 𝑊)
4thatlem0.v 𝑉 = ((𝑃 𝑆) 𝑊)
4thatlem0.c 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
Assertion
Ref Expression
4atexlemex2 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐶   𝑧,   𝑧,   𝑧,𝑃   𝑧,𝑆   𝑧,𝑊
Allowed substitution hints:   𝜑(𝑧)   𝑄(𝑧)   𝑅(𝑧)   𝑇(𝑧)   𝑈(𝑧)   𝐻(𝑧)   𝐾(𝑧)   (𝑧)   𝑉(𝑧)

Proof of Theorem 4atexlemex2
StepHypRef Expression
1 4thatlem.ph . . . 4 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊 ∧ (𝑃 𝑅) = (𝑄 𝑅)) ∧ (𝑇𝐴 ∧ (𝑈 𝑇) = (𝑉 𝑇))) ∧ (𝑃𝑄 ∧ ¬ 𝑆 (𝑃 𝑄))))
2 4thatlem0.l . . . 4 = (le‘𝐾)
3 4thatlem0.j . . . 4 = (join‘𝐾)
4 4thatlem0.m . . . 4 = (meet‘𝐾)
5 4thatlem0.a . . . 4 𝐴 = (Atoms‘𝐾)
6 4thatlem0.h . . . 4 𝐻 = (LHyp‘𝐾)
7 4thatlem0.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 4thatlem0.v . . . 4 𝑉 = ((𝑃 𝑆) 𝑊)
9 4thatlem0.c . . . 4 𝐶 = ((𝑄 𝑇) (𝑃 𝑆))
101, 2, 3, 4, 5, 6, 7, 8, 94atexlemc 40070 . . 3 (𝜑𝐶𝐴)
1110adantr 480 . 2 ((𝜑𝐶𝑆) → 𝐶𝐴)
121, 2, 3, 4, 5, 6, 7, 8, 94atexlemnclw 40071 . . 3 (𝜑 → ¬ 𝐶 𝑊)
1312adantr 480 . 2 ((𝜑𝐶𝑆) → ¬ 𝐶 𝑊)
141, 2, 3, 4, 5, 6, 7, 84atexlemntlpq 40069 . . . . 5 (𝜑 → ¬ 𝑇 (𝑃 𝑄))
15 id 22 . . . . . . . . . . 11 (𝐶 = 𝑃𝐶 = 𝑃)
169, 15eqtr3id 2779 . . . . . . . . . 10 (𝐶 = 𝑃 → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1716adantl 481 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) = 𝑃)
1814atexlemkl 40058 . . . . . . . . . . . 12 (𝜑𝐾 ∈ Lat)
191, 3, 54atexlemqtb 40062 . . . . . . . . . . . 12 (𝜑 → (𝑄 𝑇) ∈ (Base‘𝐾))
201, 3, 54atexlempsb 40061 . . . . . . . . . . . 12 (𝜑 → (𝑃 𝑆) ∈ (Base‘𝐾))
21 eqid 2730 . . . . . . . . . . . . 13 (Base‘𝐾) = (Base‘𝐾)
2221, 2, 4latmle1 18430 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2318, 19, 20, 22syl3anc 1373 . . . . . . . . . . 11 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑄 𝑇))
2414atexlemk 40048 . . . . . . . . . . . 12 (𝜑𝐾 ∈ HL)
2514atexlemq 40052 . . . . . . . . . . . 12 (𝜑𝑄𝐴)
2614atexlemt 40054 . . . . . . . . . . . 12 (𝜑𝑇𝐴)
273, 5hlatjcom 39368 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) = (𝑇 𝑄))
2824, 25, 26, 27syl3anc 1373 . . . . . . . . . . 11 (𝜑 → (𝑄 𝑇) = (𝑇 𝑄))
2923, 28breqtrd 5136 . . . . . . . . . 10 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3029adantr 480 . . . . . . . . 9 ((𝜑𝐶 = 𝑃) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑇 𝑄))
3117, 30eqbrtrrd 5134 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → 𝑃 (𝑇 𝑄))
3214atexlemkc 40059 . . . . . . . . . 10 (𝜑𝐾 ∈ CvLat)
3314atexlemp 40051 . . . . . . . . . 10 (𝜑𝑃𝐴)
3414atexlempnq 40056 . . . . . . . . . 10 (𝜑𝑃𝑄)
352, 3, 5cvlatexch2 39337 . . . . . . . . . 10 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑇𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3632, 33, 26, 25, 34, 35syl131anc 1385 . . . . . . . . 9 (𝜑 → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3736adantr 480 . . . . . . . 8 ((𝜑𝐶 = 𝑃) → (𝑃 (𝑇 𝑄) → 𝑇 (𝑃 𝑄)))
3831, 37mpd 15 . . . . . . 7 ((𝜑𝐶 = 𝑃) → 𝑇 (𝑃 𝑄))
3938ex 412 . . . . . 6 (𝜑 → (𝐶 = 𝑃𝑇 (𝑃 𝑄)))
4039necon3bd 2940 . . . . 5 (𝜑 → (¬ 𝑇 (𝑃 𝑄) → 𝐶𝑃))
4114, 40mpd 15 . . . 4 (𝜑𝐶𝑃)
4241adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑃)
43 simpr 484 . . 3 ((𝜑𝐶𝑆) → 𝐶𝑆)
4421, 2, 4latmle2 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ (𝑃 𝑆) ∈ (Base‘𝐾)) → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
4518, 19, 20, 44syl3anc 1373 . . . . 5 (𝜑 → ((𝑄 𝑇) (𝑃 𝑆)) (𝑃 𝑆))
469, 45eqbrtrid 5145 . . . 4 (𝜑𝐶 (𝑃 𝑆))
4746adantr 480 . . 3 ((𝜑𝐶𝑆) → 𝐶 (𝑃 𝑆))
4814atexlems 40053 . . . . 5 (𝜑𝑆𝐴)
491, 2, 3, 54atexlempns 40063 . . . . 5 (𝜑𝑃𝑆)
505, 2, 3cvlsupr2 39343 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑆𝐴𝐶𝐴) ∧ 𝑃𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5132, 33, 48, 10, 49, 50syl131anc 1385 . . . 4 (𝜑 → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5251adantr 480 . . 3 ((𝜑𝐶𝑆) → ((𝑃 𝐶) = (𝑆 𝐶) ↔ (𝐶𝑃𝐶𝑆𝐶 (𝑃 𝑆))))
5342, 43, 47, 52mpbir3and 1343 . 2 ((𝜑𝐶𝑆) → (𝑃 𝐶) = (𝑆 𝐶))
54 breq1 5113 . . . . 5 (𝑧 = 𝐶 → (𝑧 𝑊𝐶 𝑊))
5554notbid 318 . . . 4 (𝑧 = 𝐶 → (¬ 𝑧 𝑊 ↔ ¬ 𝐶 𝑊))
56 oveq2 7398 . . . . 5 (𝑧 = 𝐶 → (𝑃 𝑧) = (𝑃 𝐶))
57 oveq2 7398 . . . . 5 (𝑧 = 𝐶 → (𝑆 𝑧) = (𝑆 𝐶))
5856, 57eqeq12d 2746 . . . 4 (𝑧 = 𝐶 → ((𝑃 𝑧) = (𝑆 𝑧) ↔ (𝑃 𝐶) = (𝑆 𝐶)))
5955, 58anbi12d 632 . . 3 (𝑧 = 𝐶 → ((¬ 𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)) ↔ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))))
6059rspcev 3591 . 2 ((𝐶𝐴 ∧ (¬ 𝐶 𝑊 ∧ (𝑃 𝐶) = (𝑆 𝐶))) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
6111, 13, 53, 60syl12anc 836 1 ((𝜑𝐶𝑆) → ∃𝑧𝐴𝑧 𝑊 ∧ (𝑃 𝑧) = (𝑆 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  Basecbs 17186  lecple 17234  joincjn 18279  meetcmee 18280  Latclat 18397  Atomscatm 39263  CvLatclc 39265  HLchlt 39350  LHypclh 39985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-proset 18262  df-poset 18281  df-plt 18296  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-p0 18391  df-p1 18392  df-lat 18398  df-clat 18465  df-oposet 39176  df-ol 39178  df-oml 39179  df-covers 39266  df-ats 39267  df-atl 39298  df-cvlat 39322  df-hlat 39351  df-llines 39499  df-lplanes 39500  df-lhyp 39989
This theorem is referenced by:  4atexlemex4  40074  4atexlemex6  40075
  Copyright terms: Public domain W3C validator