MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Visualization version   GIF version

Theorem odadd1 19364
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 19306 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 odadd1.2 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
3 odadd1.3 . . . . . . . . . 10 + = (+g𝐺)
42, 3grpcl 18500 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
51, 4syl3an1 1161 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
6 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
72, 6odcl 19059 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
85, 7syl 17 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
98nn0zd 12353 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
102, 6odcl 19059 . . . . . . . . . 10 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1132 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
1211nn0zd 12353 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
132, 6odcl 19059 . . . . . . . . . 10 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
14133ad2ant3 1133 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
1514nn0zd 12353 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
1612, 15gcdcld 16143 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
1716nn0zd 12353 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
189, 17zmulcld 12361 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
1918adantr 480 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
20 dvds0 15909 . . . 4 (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
2119, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
22 gcdeq0 16152 . . . . . 6 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2312, 15, 22syl2anc 583 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2423biimpa 476 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0))
25 oveq12 7264 . . . . 5 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = (0 · 0))
26 0cn 10898 . . . . . 6 0 ∈ ℂ
2726mul01i 11095 . . . . 5 (0 · 0) = 0
2825, 27eqtrdi 2795 . . . 4 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
2924, 28syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
3021, 29breqtrrd 5098 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
31 simpl1 1189 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
3217adantr 480 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
3312adantr 480 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
3415adantr 480 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
35 gcddvds 16138 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3633, 34, 35syl2anc 583 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3736simpld 494 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3832, 33, 34, 37dvdsmultr1d 15934 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
39 simpr 484 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
4033, 34zmulcld 12361 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
41 dvdsval2 15894 . . . . . . . . 9 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4232, 39, 40, 41syl3anc 1369 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4338, 42mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
44 simpl2 1190 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
45 simpl3 1191 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
46 eqid 2738 . . . . . . . 8 (.g𝐺) = (.g𝐺)
472, 46, 3mulgdi 19343 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4831, 43, 44, 45, 47syl13anc 1370 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4936simprd 495 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
50 dvdsval2 15894 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5132, 39, 34, 50syl3anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5249, 51mpbid 231 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
53 dvdsmul1 15915 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5433, 52, 53syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5533zcnd 12356 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5634zcnd 12356 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5732zcnd 12356 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
5855, 56, 57, 39divassd 11716 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5954, 58breqtrrd 5098 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
6031, 1syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
61 eqid 2738 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
622, 6, 46, 61oddvds 19070 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6360, 44, 43, 62syl3anc 1369 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6459, 63mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺))
65 dvdsval2 15894 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6632, 39, 33, 65syl3anc 1369 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6737, 66mpbid 231 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
68 dvdsmul1 15915 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
6934, 67, 68syl2anc 583 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7055, 56mulcomd 10927 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) = ((𝑂𝐵) · (𝑂𝐴)))
7170oveq1d 7270 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))))
7256, 55, 57, 39divassd 11716 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7371, 72eqtrd 2778 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7469, 73breqtrrd 5098 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
752, 6, 46, 61oddvds 19070 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7660, 45, 43, 75syl3anc 1369 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7774, 76mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺))
7864, 77oveq12d 7273 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = ((0g𝐺) + (0g𝐺)))
792, 61grpidcl 18522 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
802, 3, 61grplid 18524 . . . . . . 7 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑋) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8160, 79, 80syl2anc2 584 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8248, 78, 813eqtrd 2782 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
835adantr 480 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
842, 6, 46, 61oddvds 19070 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8560, 83, 43, 84syl3anc 1369 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8682, 85mpbird 256 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
879adantr 480 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
88 dvdsmulcr 15923 . . . . 5 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
8987, 43, 32, 39, 88syl112anc 1372 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9086, 89mpbird 256 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))))
9140zcnd 12356 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℂ)
9291, 57, 39divcan1d 11682 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · (𝑂𝐵)))
9390, 92breqtrd 5096 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
9430, 93pm2.61dane 3031 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802   · cmul 10807   / cdiv 11562  0cn0 12163  cz 12249  cdvds 15891   gcd cgcd 16129  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  .gcmg 18615  odcod 19047  Abelcabl 19302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-od 19051  df-cmn 19303  df-abl 19304
This theorem is referenced by:  odadd  19366  torsubg  19370
  Copyright terms: Public domain W3C validator