MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odadd1 Structured version   Visualization version   GIF version

Theorem odadd1 19676
Description: The order of a product in an abelian group divides the LCM of the orders of the factors. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
odadd1.1 𝑂 = (od‘𝐺)
odadd1.2 𝑋 = (Base‘𝐺)
odadd1.3 + = (+g𝐺)
Assertion
Ref Expression
odadd1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))

Proof of Theorem odadd1
StepHypRef Expression
1 ablgrp 19617 . . . . . . . . 9 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
2 odadd1.2 . . . . . . . . . 10 𝑋 = (Base‘𝐺)
3 odadd1.3 . . . . . . . . . 10 + = (+g𝐺)
42, 3grpcl 18802 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
51, 4syl3an1 1163 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝐴 + 𝐵) ∈ 𝑋)
6 odadd1.1 . . . . . . . . 9 𝑂 = (od‘𝐺)
72, 6odcl 19368 . . . . . . . 8 ((𝐴 + 𝐵) ∈ 𝑋 → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
85, 7syl 17 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℕ0)
98nn0zd 12566 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
102, 6odcl 19368 . . . . . . . . . 10 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
11103ad2ant2 1134 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℕ0)
1211nn0zd 12566 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐴) ∈ ℤ)
132, 6odcl 19368 . . . . . . . . . 10 (𝐵𝑋 → (𝑂𝐵) ∈ ℕ0)
14133ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℕ0)
1514nn0zd 12566 . . . . . . . 8 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (𝑂𝐵) ∈ ℤ)
1612, 15gcdcld 16431 . . . . . . 7 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℕ0)
1716nn0zd 12566 . . . . . 6 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
189, 17zmulcld 12654 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
1918adantr 481 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
20 dvds0 16197 . . . 4 (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
2119, 20syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ 0)
22 gcdeq0 16440 . . . . . 6 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2312, 15, 22syl2anc 584 . . . . 5 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → (((𝑂𝐴) gcd (𝑂𝐵)) = 0 ↔ ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0)))
2423biimpa 477 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0))
25 oveq12 7402 . . . . 5 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = (0 · 0))
26 0cn 11188 . . . . . 6 0 ∈ ℂ
2726mul01i 11386 . . . . 5 (0 · 0) = 0
2825, 27eqtrdi 2787 . . . 4 (((𝑂𝐴) = 0 ∧ (𝑂𝐵) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
2924, 28syl 17 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂𝐴) · (𝑂𝐵)) = 0)
3021, 29breqtrrd 5169 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) = 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
31 simpl1 1191 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Abel)
3217adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ)
3312adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℤ)
3415adantr 481 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℤ)
35 gcddvds 16426 . . . . . . . . . . 11 (((𝑂𝐴) ∈ ℤ ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3633, 34, 35syl2anc 584 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵)))
3736simpld 495 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴))
3832, 33, 34, 37dvdsmultr1d 16222 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)))
39 simpr 485 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)
4033, 34zmulcld 12654 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ)
41 dvdsval2 16182 . . . . . . . . 9 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ ((𝑂𝐴) · (𝑂𝐵)) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4232, 39, 40, 41syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ ((𝑂𝐴) · (𝑂𝐵)) ↔ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
4338, 42mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
44 simpl2 1192 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐴𝑋)
45 simpl3 1193 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐵𝑋)
46 eqid 2731 . . . . . . . 8 (.g𝐺) = (.g𝐺)
472, 46, 3mulgdi 19655 . . . . . . 7 ((𝐺 ∈ Abel ∧ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ 𝐴𝑋𝐵𝑋)) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4831, 43, 44, 45, 47syl13anc 1372 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)))
4936simprd 496 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵))
50 dvdsval2 16182 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐵) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5132, 39, 34, 50syl3anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐵) ↔ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
5249, 51mpbid 231 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
53 dvdsmul1 16203 . . . . . . . . . 10 (((𝑂𝐴) ∈ ℤ ∧ ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5433, 52, 53syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5533zcnd 12649 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∈ ℂ)
5634zcnd 12649 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∈ ℂ)
5732zcnd 12649 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℂ)
5855, 56, 57, 39divassd 12007 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · ((𝑂𝐵) / ((𝑂𝐴) gcd (𝑂𝐵)))))
5954, 58breqtrrd 5169 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
6031, 1syl 17 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → 𝐺 ∈ Grp)
61 eqid 2731 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
622, 6, 46, 61oddvds 19379 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐴𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6360, 44, 43, 62syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺)))
6459, 63mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) = (0g𝐺))
65 dvdsval2 16182 . . . . . . . . . . . 12 ((((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0 ∧ (𝑂𝐴) ∈ ℤ) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6632, 39, 33, 65syl3anc 1371 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) gcd (𝑂𝐵)) ∥ (𝑂𝐴) ↔ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ))
6737, 66mpbid 231 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ)
68 dvdsmul1 16203 . . . . . . . . . 10 (((𝑂𝐵) ∈ ℤ ∧ ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
6934, 67, 68syl2anc 584 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7055, 56mulcomd 11217 . . . . . . . . . . 11 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) = ((𝑂𝐵) · (𝑂𝐴)))
7170oveq1d 7408 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))))
7256, 55, 57, 39divassd 12007 . . . . . . . . . 10 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐵) · (𝑂𝐴)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7371, 72eqtrd 2771 . . . . . . . . 9 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐵) · ((𝑂𝐴) / ((𝑂𝐴) gcd (𝑂𝐵)))))
7469, 73breqtrrd 5169 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
752, 6, 46, 61oddvds 19379 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐵𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7660, 45, 43, 75syl3anc 1371 . . . . . . . 8 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐵) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺)))
7774, 76mpbid 231 . . . . . . 7 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵) = (0g𝐺))
7864, 77oveq12d 7411 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐴) + ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)𝐵)) = ((0g𝐺) + (0g𝐺)))
792, 61grpidcl 18825 . . . . . . 7 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
802, 3, 61grplid 18827 . . . . . . 7 ((𝐺 ∈ Grp ∧ (0g𝐺) ∈ 𝑋) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8160, 79, 80syl2anc2 585 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((0g𝐺) + (0g𝐺)) = (0g𝐺))
8248, 78, 813eqtrd 2775 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺))
835adantr 481 . . . . . 6 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝐴 + 𝐵) ∈ 𝑋)
842, 6, 46, 61oddvds 19379 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝐴 + 𝐵) ∈ 𝑋 ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8560, 83, 43, 84syl3anc 1371 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ↔ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))(.g𝐺)(𝐴 + 𝐵)) = (0g𝐺)))
8682, 85mpbird 256 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))))
879adantr 481 . . . . 5 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (𝑂‘(𝐴 + 𝐵)) ∈ ℤ)
88 dvdsmulcr 16211 . . . . 5 (((𝑂‘(𝐴 + 𝐵)) ∈ ℤ ∧ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) ∈ ℤ ∧ (((𝑂𝐴) gcd (𝑂𝐵)) ∈ ℤ ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0)) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
8987, 43, 32, 39, 88syl112anc 1374 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → (((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) ↔ (𝑂‘(𝐴 + 𝐵)) ∥ (((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵)))))
9086, 89mpbird 256 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))))
9140zcnd 12649 . . . 4 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂𝐴) · (𝑂𝐵)) ∈ ℂ)
9291, 57, 39divcan1d 11973 . . 3 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((((𝑂𝐴) · (𝑂𝐵)) / ((𝑂𝐴) gcd (𝑂𝐵))) · ((𝑂𝐴) gcd (𝑂𝐵))) = ((𝑂𝐴) · (𝑂𝐵)))
9390, 92breqtrd 5167 . 2 (((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) ∧ ((𝑂𝐴) gcd (𝑂𝐵)) ≠ 0) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
9430, 93pm2.61dane 3028 1 ((𝐺 ∈ Abel ∧ 𝐴𝑋𝐵𝑋) → ((𝑂‘(𝐴 + 𝐵)) · ((𝑂𝐴) gcd (𝑂𝐵))) ∥ ((𝑂𝐴) · (𝑂𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5141  cfv 6532  (class class class)co 7393  0cc0 11092   · cmul 11097   / cdiv 11853  0cn0 12454  cz 12540  cdvds 16179   gcd cgcd 16417  Basecbs 17126  +gcplusg 17179  0gc0g 17367  Grpcgrp 18794  .gcmg 18922  odcod 19356  Abelcabl 19613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-inf 9420  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-n0 12455  df-z 12541  df-uz 12805  df-rp 12957  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-dvds 16180  df-gcd 16418  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-mulg 18923  df-od 19360  df-cmn 19614  df-abl 19615
This theorem is referenced by:  odadd  19678  torsubg  19682
  Copyright terms: Public domain W3C validator