Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusdimsum Structured version   Visualization version   GIF version

Theorem qusdimsum 33668
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusdimsum.x 𝑋 = (𝑊s 𝑈)
qusdimsum.y 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
Assertion
Ref Expression
qusdimsum ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))

Proof of Theorem qusdimsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusdimsum.y . . . 4 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
2 eqid 2735 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 lveclmod 21064 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
43adantr 480 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod)
5 simpr 484 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
6 eqid 2735 . . . 4 (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))
71, 2, 4, 5, 6quslmhm 33374 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌))
8 eqid 2735 . . . 4 (0g𝑌) = (0g𝑌)
9 eqid 2735 . . . 4 (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))
10 eqid 2735 . . . 4 (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
118, 9, 10dimkerim 33667 . . 3 ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
127, 11syldan 591 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
13 eqid 2735 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1413lsssubg 20914 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
153, 14sylan 580 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 20866 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
1817adantr 480 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel)
19 ablnsg 19828 . . . . . . . 8 (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2018, 19syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2115, 20eleqtrrd 2837 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊))
222, 6, 1, 8qusker 33364 . . . . . . 7 (𝑈 ∈ (NrmSGrp‘𝑊) → ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}) = 𝑈)
2322oveq2d 7421 . . . . . 6 (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
2421, 23syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
25 qusdimsum.x . . . . 5 𝑋 = (𝑊s 𝑈)
2624, 25eqtr4di 2788 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = 𝑋)
2726fveq2d 6880 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) = (dim‘𝑋))
281a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)))
292a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
30 ovexd 7440 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V)
31 simpl 482 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec)
3228, 29, 6, 30, 31quslem 17557 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)))
33 forn 6793 . . . . . . . 8 ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3432, 33syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3528, 29, 30, 31qusbas 17559 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌))
3634, 35eqtr2d 2771 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
3736oveq2d 7421 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s (Base‘𝑌)) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))
381ovexi 7439 . . . . . 6 𝑌 ∈ V
39 eqid 2735 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
4039ressid 17265 . . . . . 6 (𝑌 ∈ V → (𝑌s (Base‘𝑌)) = 𝑌)
4138, 40ax-mp 5 . . . . 5 (𝑌s (Base‘𝑌)) = 𝑌
4237, 41eqtr3di 2785 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌)
4342fveq2d 6880 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌))
4427, 43oveq12d 7423 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
4512, 44eqtrd 2770 1 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cmpt 5201  ccnv 5653  ran crn 5655  cima 5657  ontowfo 6529  cfv 6531  (class class class)co 7405  [cec 8717   / cqs 8718   +𝑒 cxad 13126  Basecbs 17228  s cress 17251  0gc0g 17453   /s cqus 17519  SubGrpcsubg 19103  NrmSGrpcnsg 19104   ~QG cqg 19105  Abelcabl 19762  LModclmod 20817  LSubSpclss 20888   LMHom clmhm 20977  LVecclvec 21060  dimcldim 33638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-reg 9606  ax-inf2 9655  ax-ac2 10477  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-rpss 7717  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-r1 9778  df-rank 9779  df-dju 9915  df-card 9953  df-acn 9956  df-ac 10130  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-xnn0 12575  df-z 12589  df-dec 12709  df-uz 12853  df-xadd 13129  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ocomp 17292  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-mri 17600  df-acs 17601  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-nsg 19107  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-nzr 20473  df-subrg 20530  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lmhm 20980  df-lmim 20981  df-lbs 21033  df-lvec 21061  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-uvc 21743  df-lindf 21766  df-linds 21767  df-dim 33639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator