| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusdimsum | Structured version Visualization version GIF version | ||
| Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| qusdimsum.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| qusdimsum.y | ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) |
| Ref | Expression |
|---|---|
| qusdimsum | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusdimsum.y | . . . 4 ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | lveclmod 21010 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) | |
| 7 | 1, 2, 4, 5, 6 | quslmhm 33305 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) |
| 8 | eqid 2729 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
| 9 | eqid 2729 | . . . 4 ⊢ (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) | |
| 10 | eqid 2729 | . . . 4 ⊢ (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) | |
| 11 | 8, 9, 10 | dimkerim 33610 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
| 12 | 7, 11 | syldan 591 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
| 13 | eqid 2729 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 14 | 13 | lsssubg 20860 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 15 | 3, 14 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 16 | lmodabl 20812 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 17 | 3, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
| 18 | 17 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel) |
| 19 | ablnsg 19726 | . . . . . . . 8 ⊢ (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) |
| 21 | 15, 20 | eleqtrrd 2831 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊)) |
| 22 | 2, 6, 1, 8 | qusker 33295 | . . . . . . 7 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}) = 𝑈) |
| 23 | 22 | oveq2d 7365 | . . . . . 6 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
| 24 | 21, 23 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
| 25 | qusdimsum.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 26 | 24, 25 | eqtr4di 2782 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = 𝑋) |
| 27 | 26 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) = (dim‘𝑋)) |
| 28 | 1 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))) |
| 29 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
| 30 | ovexd 7384 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V) | |
| 31 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec) | |
| 32 | 28, 29, 6, 30, 31 | quslem 17447 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
| 33 | forn 6739 | . . . . . . . 8 ⊢ ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) | |
| 34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
| 35 | 28, 29, 30, 31 | qusbas 17449 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌)) |
| 36 | 34, 35 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) |
| 37 | 36 | oveq2d 7365 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s (Base‘𝑌)) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) |
| 38 | 1 | ovexi 7383 | . . . . . 6 ⊢ 𝑌 ∈ V |
| 39 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 40 | 39 | ressid 17155 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑌 ↾s (Base‘𝑌)) = 𝑌) |
| 41 | 38, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑌 ↾s (Base‘𝑌)) = 𝑌 |
| 42 | 37, 41 | eqtr3di 2779 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌) |
| 43 | 42 | fveq2d 6826 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌)) |
| 44 | 27, 43 | oveq12d 7367 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| 45 | 12, 44 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 ↦ cmpt 5173 ◡ccnv 5618 ran crn 5620 “ cima 5622 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 [cec 8623 / cqs 8624 +𝑒 cxad 13012 Basecbs 17120 ↾s cress 17141 0gc0g 17343 /s cqus 17409 SubGrpcsubg 18999 NrmSGrpcnsg 19000 ~QG cqg 19001 Abelcabl 19660 LModclmod 20763 LSubSpclss 20834 LMHom clmhm 20923 LVecclvec 21006 dimcldim 33581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-reg 9484 ax-inf2 9537 ax-ac2 10357 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-rpss 7659 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-oadd 8392 df-er 8625 df-ec 8627 df-qs 8631 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-r1 9660 df-rank 9661 df-dju 9797 df-card 9835 df-acn 9838 df-ac 10010 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-xnn0 12458 df-z 12472 df-dec 12592 df-uz 12736 df-xadd 13015 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ocomp 17182 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-imas 17412 df-qus 17413 df-mre 17488 df-mrc 17489 df-mri 17490 df-acs 17491 df-proset 18200 df-drs 18201 df-poset 18219 df-ipo 18434 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-nsg 19003 df-eqg 19004 df-ghm 19092 df-cntz 19196 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-nzr 20398 df-subrg 20455 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lmhm 20926 df-lmim 20927 df-lbs 20979 df-lvec 21007 df-sra 21077 df-rgmod 21078 df-dsmm 21639 df-frlm 21654 df-uvc 21690 df-lindf 21713 df-linds 21714 df-dim 33582 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |