Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusdimsum Structured version   Visualization version   GIF version

Theorem qusdimsum 31112
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusdimsum.x 𝑋 = (𝑊s 𝑈)
qusdimsum.y 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
Assertion
Ref Expression
qusdimsum ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))

Proof of Theorem qusdimsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusdimsum.y . . . 4 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
2 eqid 2798 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
43adantr 484 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod)
5 simpr 488 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
6 eqid 2798 . . . 4 (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))
71, 2, 4, 5, 6quslmhm 30975 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌))
8 eqid 2798 . . . 4 (0g𝑌) = (0g𝑌)
9 eqid 2798 . . . 4 (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))
10 eqid 2798 . . . 4 (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
118, 9, 10dimkerim 31111 . . 3 ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
127, 11syldan 594 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
13 eqid 2798 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1413lsssubg 19722 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
153, 14sylan 583 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 19674 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
1817adantr 484 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel)
19 ablnsg 18960 . . . . . . . 8 (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2018, 19syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2115, 20eleqtrrd 2893 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊))
222, 6, 1, 8qusker 30969 . . . . . . 7 (𝑈 ∈ (NrmSGrp‘𝑊) → ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}) = 𝑈)
2322oveq2d 7151 . . . . . 6 (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
2421, 23syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
25 qusdimsum.x . . . . 5 𝑋 = (𝑊s 𝑈)
2624, 25eqtr4di 2851 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = 𝑋)
2726fveq2d 6649 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) = (dim‘𝑋))
281ovexi 7169 . . . . . 6 𝑌 ∈ V
29 eqid 2798 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
3029ressid 16551 . . . . . 6 (𝑌 ∈ V → (𝑌s (Base‘𝑌)) = 𝑌)
3128, 30ax-mp 5 . . . . 5 (𝑌s (Base‘𝑌)) = 𝑌
321a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)))
332a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
34 ovexd 7170 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V)
35 simpl 486 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec)
3632, 33, 6, 34, 35quslem 16808 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)))
37 forn 6568 . . . . . . . 8 ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3836, 37syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3932, 33, 34, 35qusbas 16810 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌))
4038, 39eqtr2d 2834 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
4140oveq2d 7151 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s (Base‘𝑌)) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))
4231, 41syl5reqr 2848 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌)
4342fveq2d 6649 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌))
4427, 43oveq12d 7153 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
4512, 44eqtrd 2833 1 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525  cmpt 5110  ccnv 5518  ran crn 5520  cima 5522  ontowfo 6322  cfv 6324  (class class class)co 7135  [cec 8270   / cqs 8271   +𝑒 cxad 12493  Basecbs 16475  s cress 16476  0gc0g 16705   /s cqus 16770  SubGrpcsubg 18265  NrmSGrpcnsg 18266   ~QG cqg 18267  Abelcabl 18899  LModclmod 19627  LSubSpclss 19696   LMHom clmhm 19784  LVecclvec 19867  dimcldim 31087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-rpss 7429  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-ec 8274  df-qs 8278  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-r1 9177  df-rank 9178  df-dju 9314  df-card 9352  df-acn 9355  df-ac 9527  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ocomp 16578  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-imas 16773  df-qus 16774  df-mre 16849  df-mrc 16850  df-mri 16851  df-acs 16852  df-proset 17530  df-drs 17531  df-poset 17548  df-ipo 17754  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-nsg 18269  df-eqg 18270  df-ghm 18348  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-subrg 19526  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lmhm 19787  df-lmim 19788  df-lbs 19840  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-nzr 20024  df-dsmm 20421  df-frlm 20436  df-uvc 20472  df-lindf 20495  df-linds 20496  df-dim 31088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator