| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > qusdimsum | Structured version Visualization version GIF version | ||
| Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
| Ref | Expression |
|---|---|
| qusdimsum.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| qusdimsum.y | ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) |
| Ref | Expression |
|---|---|
| qusdimsum | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusdimsum.y | . . . 4 ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) | |
| 2 | eqid 2735 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 3 | lveclmod 21064 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod) |
| 5 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
| 6 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) | |
| 7 | 1, 2, 4, 5, 6 | quslmhm 33374 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) |
| 8 | eqid 2735 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
| 9 | eqid 2735 | . . . 4 ⊢ (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) | |
| 10 | eqid 2735 | . . . 4 ⊢ (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) | |
| 11 | 8, 9, 10 | dimkerim 33667 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
| 12 | 7, 11 | syldan 591 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
| 13 | eqid 2735 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 14 | 13 | lsssubg 20914 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 15 | 3, 14 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
| 16 | lmodabl 20866 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
| 17 | 3, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
| 18 | 17 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel) |
| 19 | ablnsg 19828 | . . . . . . . 8 ⊢ (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) | |
| 20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) |
| 21 | 15, 20 | eleqtrrd 2837 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊)) |
| 22 | 2, 6, 1, 8 | qusker 33364 | . . . . . . 7 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}) = 𝑈) |
| 23 | 22 | oveq2d 7421 | . . . . . 6 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
| 24 | 21, 23 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
| 25 | qusdimsum.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 26 | 24, 25 | eqtr4di 2788 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = 𝑋) |
| 27 | 26 | fveq2d 6880 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) = (dim‘𝑋)) |
| 28 | 1 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))) |
| 29 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
| 30 | ovexd 7440 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V) | |
| 31 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec) | |
| 32 | 28, 29, 6, 30, 31 | quslem 17557 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
| 33 | forn 6793 | . . . . . . . 8 ⊢ ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) | |
| 34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
| 35 | 28, 29, 30, 31 | qusbas 17559 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌)) |
| 36 | 34, 35 | eqtr2d 2771 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) |
| 37 | 36 | oveq2d 7421 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s (Base‘𝑌)) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) |
| 38 | 1 | ovexi 7439 | . . . . . 6 ⊢ 𝑌 ∈ V |
| 39 | eqid 2735 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
| 40 | 39 | ressid 17265 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑌 ↾s (Base‘𝑌)) = 𝑌) |
| 41 | 38, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑌 ↾s (Base‘𝑌)) = 𝑌 |
| 42 | 37, 41 | eqtr3di 2785 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌) |
| 43 | 42 | fveq2d 6880 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌)) |
| 44 | 27, 43 | oveq12d 7423 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| 45 | 12, 44 | eqtrd 2770 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {csn 4601 ↦ cmpt 5201 ◡ccnv 5653 ran crn 5655 “ cima 5657 –onto→wfo 6529 ‘cfv 6531 (class class class)co 7405 [cec 8717 / cqs 8718 +𝑒 cxad 13126 Basecbs 17228 ↾s cress 17251 0gc0g 17453 /s cqus 17519 SubGrpcsubg 19103 NrmSGrpcnsg 19104 ~QG cqg 19105 Abelcabl 19762 LModclmod 20817 LSubSpclss 20888 LMHom clmhm 20977 LVecclvec 21060 dimcldim 33638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 ax-ac2 10477 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-rpss 7717 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8719 df-ec 8721 df-qs 8725 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-sup 9454 df-inf 9455 df-oi 9524 df-r1 9778 df-rank 9779 df-dju 9915 df-card 9953 df-acn 9956 df-ac 10130 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-xnn0 12575 df-z 12589 df-dec 12709 df-uz 12853 df-xadd 13129 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ocomp 17292 df-ds 17293 df-hom 17295 df-cco 17296 df-0g 17455 df-gsum 17456 df-prds 17461 df-pws 17463 df-imas 17522 df-qus 17523 df-mre 17598 df-mrc 17599 df-mri 17600 df-acs 17601 df-proset 18306 df-drs 18307 df-poset 18325 df-ipo 18538 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-mulg 19051 df-subg 19106 df-nsg 19107 df-eqg 19108 df-ghm 19196 df-cntz 19300 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-nzr 20473 df-subrg 20530 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lmhm 20980 df-lmim 20981 df-lbs 21033 df-lvec 21061 df-sra 21131 df-rgmod 21132 df-dsmm 21692 df-frlm 21707 df-uvc 21743 df-lindf 21766 df-linds 21767 df-dim 33639 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |