![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusdimsum | Structured version Visualization version GIF version |
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
qusdimsum.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
qusdimsum.y | ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) |
Ref | Expression |
---|---|
qusdimsum | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusdimsum.y | . . . 4 ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) | |
2 | eqid 2733 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lveclmod 20705 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
4 | 3 | adantr 482 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod) |
5 | simpr 486 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
6 | eqid 2733 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) | |
7 | 1, 2, 4, 5, 6 | quslmhm 32439 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) |
8 | eqid 2733 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
9 | eqid 2733 | . . . 4 ⊢ (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) | |
10 | eqid 2733 | . . . 4 ⊢ (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) | |
11 | 8, 9, 10 | dimkerim 32657 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
12 | 7, 11 | syldan 592 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
13 | eqid 2733 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | 13 | lsssubg 20556 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
15 | 3, 14 | sylan 581 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
16 | lmodabl 20507 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
17 | 3, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
18 | 17 | adantr 482 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel) |
19 | ablnsg 19707 | . . . . . . . 8 ⊢ (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) |
21 | 15, 20 | eleqtrrd 2837 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊)) |
22 | 2, 6, 1, 8 | qusker 32433 | . . . . . . 7 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}) = 𝑈) |
23 | 22 | oveq2d 7420 | . . . . . 6 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
24 | 21, 23 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
25 | qusdimsum.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
26 | 24, 25 | eqtr4di 2791 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = 𝑋) |
27 | 26 | fveq2d 6892 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) = (dim‘𝑋)) |
28 | 1 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))) |
29 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
30 | ovexd 7439 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V) | |
31 | simpl 484 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec) | |
32 | 28, 29, 6, 30, 31 | quslem 17485 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
33 | forn 6805 | . . . . . . . 8 ⊢ ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) | |
34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
35 | 28, 29, 30, 31 | qusbas 17487 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌)) |
36 | 34, 35 | eqtr2d 2774 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) |
37 | 36 | oveq2d 7420 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s (Base‘𝑌)) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) |
38 | 1 | ovexi 7438 | . . . . . 6 ⊢ 𝑌 ∈ V |
39 | eqid 2733 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
40 | 39 | ressid 17185 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑌 ↾s (Base‘𝑌)) = 𝑌) |
41 | 38, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑌 ↾s (Base‘𝑌)) = 𝑌 |
42 | 37, 41 | eqtr3di 2788 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌) |
43 | 42 | fveq2d 6892 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌)) |
44 | 27, 43 | oveq12d 7422 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
45 | 12, 44 | eqtrd 2773 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4627 ↦ cmpt 5230 ◡ccnv 5674 ran crn 5676 “ cima 5678 –onto→wfo 6538 ‘cfv 6540 (class class class)co 7404 [cec 8697 / cqs 8698 +𝑒 cxad 13086 Basecbs 17140 ↾s cress 17169 0gc0g 17381 /s cqus 17447 SubGrpcsubg 18994 NrmSGrpcnsg 18995 ~QG cqg 18996 Abelcabl 19642 LModclmod 20459 LSubSpclss 20530 LMHom clmhm 20618 LVecclvec 20701 dimcldim 32630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-reg 9583 ax-inf2 9632 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-rpss 7708 df-om 7851 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-sup 9433 df-inf 9434 df-oi 9501 df-r1 9755 df-rank 9756 df-dju 9892 df-card 9930 df-acn 9933 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-xadd 13089 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ocomp 17214 df-ds 17215 df-hom 17217 df-cco 17218 df-0g 17383 df-gsum 17384 df-prds 17389 df-pws 17391 df-imas 17450 df-qus 17451 df-mre 17526 df-mrc 17527 df-mri 17528 df-acs 17529 df-proset 18244 df-drs 18245 df-poset 18262 df-ipo 18477 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mulg 18945 df-subg 18997 df-nsg 18998 df-eqg 18999 df-ghm 19084 df-cntz 19175 df-lsm 19497 df-cmn 19643 df-abl 19644 df-mgp 19980 df-ur 19997 df-ring 20049 df-oppr 20139 df-dvdsr 20160 df-unit 20161 df-invr 20191 df-nzr 20281 df-drng 20306 df-subrg 20349 df-lmod 20461 df-lss 20531 df-lsp 20571 df-lmhm 20621 df-lmim 20622 df-lbs 20674 df-lvec 20702 df-sra 20773 df-rgmod 20774 df-dsmm 21271 df-frlm 21286 df-uvc 21322 df-lindf 21345 df-linds 21346 df-dim 32631 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |