![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusdimsum | Structured version Visualization version GIF version |
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
qusdimsum.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
qusdimsum.y | ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) |
Ref | Expression |
---|---|
qusdimsum | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusdimsum.y | . . . 4 ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) | |
2 | eqid 2724 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lveclmod 20943 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod) |
5 | simpr 484 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
6 | eqid 2724 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) | |
7 | 1, 2, 4, 5, 6 | quslmhm 32906 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) |
8 | eqid 2724 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
9 | eqid 2724 | . . . 4 ⊢ (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) | |
10 | eqid 2724 | . . . 4 ⊢ (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) | |
11 | 8, 9, 10 | dimkerim 33157 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
12 | 7, 11 | syldan 590 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
13 | eqid 2724 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | 13 | lsssubg 20793 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
15 | 3, 14 | sylan 579 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
16 | lmodabl 20744 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
17 | 3, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
18 | 17 | adantr 480 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel) |
19 | ablnsg 19756 | . . . . . . . 8 ⊢ (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) |
21 | 15, 20 | eleqtrrd 2828 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊)) |
22 | 2, 6, 1, 8 | qusker 32896 | . . . . . . 7 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}) = 𝑈) |
23 | 22 | oveq2d 7417 | . . . . . 6 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
24 | 21, 23 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
25 | qusdimsum.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
26 | 24, 25 | eqtr4di 2782 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = 𝑋) |
27 | 26 | fveq2d 6885 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) = (dim‘𝑋)) |
28 | 1 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))) |
29 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
30 | ovexd 7436 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V) | |
31 | simpl 482 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec) | |
32 | 28, 29, 6, 30, 31 | quslem 17487 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
33 | forn 6798 | . . . . . . . 8 ⊢ ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) | |
34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
35 | 28, 29, 30, 31 | qusbas 17489 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌)) |
36 | 34, 35 | eqtr2d 2765 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) |
37 | 36 | oveq2d 7417 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s (Base‘𝑌)) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) |
38 | 1 | ovexi 7435 | . . . . . 6 ⊢ 𝑌 ∈ V |
39 | eqid 2724 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
40 | 39 | ressid 17187 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑌 ↾s (Base‘𝑌)) = 𝑌) |
41 | 38, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑌 ↾s (Base‘𝑌)) = 𝑌 |
42 | 37, 41 | eqtr3di 2779 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌) |
43 | 42 | fveq2d 6885 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌)) |
44 | 27, 43 | oveq12d 7419 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
45 | 12, 44 | eqtrd 2764 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4620 ↦ cmpt 5221 ◡ccnv 5665 ran crn 5667 “ cima 5669 –onto→wfo 6531 ‘cfv 6533 (class class class)co 7401 [cec 8696 / cqs 8697 +𝑒 cxad 13086 Basecbs 17142 ↾s cress 17171 0gc0g 17383 /s cqus 17449 SubGrpcsubg 19036 NrmSGrpcnsg 19037 ~QG cqg 19038 Abelcabl 19690 LModclmod 20695 LSubSpclss 20767 LMHom clmhm 20856 LVecclvec 20939 dimcldim 33128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9582 ax-inf2 9631 ax-ac2 10453 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-rpss 7706 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-tpos 8206 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8698 df-ec 8700 df-qs 8704 df-map 8817 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-sup 9432 df-inf 9433 df-oi 9500 df-r1 9754 df-rank 9755 df-dju 9891 df-card 9929 df-acn 9932 df-ac 10106 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-xadd 13089 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-struct 17078 df-sets 17095 df-slot 17113 df-ndx 17125 df-base 17143 df-ress 17172 df-plusg 17208 df-mulr 17209 df-sca 17211 df-vsca 17212 df-ip 17213 df-tset 17214 df-ple 17215 df-ocomp 17216 df-ds 17217 df-hom 17219 df-cco 17220 df-0g 17385 df-gsum 17386 df-prds 17391 df-pws 17393 df-imas 17452 df-qus 17453 df-mre 17528 df-mrc 17529 df-mri 17530 df-acs 17531 df-proset 18249 df-drs 18250 df-poset 18267 df-ipo 18482 df-mgm 18562 df-sgrp 18641 df-mnd 18657 df-mhm 18702 df-submnd 18703 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18985 df-subg 19039 df-nsg 19040 df-eqg 19041 df-ghm 19128 df-cntz 19222 df-lsm 19545 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-oppr 20225 df-dvdsr 20248 df-unit 20249 df-invr 20279 df-nzr 20404 df-subrg 20460 df-drng 20578 df-lmod 20697 df-lss 20768 df-lsp 20808 df-lmhm 20859 df-lmim 20860 df-lbs 20912 df-lvec 20940 df-sra 21010 df-rgmod 21011 df-dsmm 21594 df-frlm 21609 df-uvc 21645 df-lindf 21668 df-linds 21669 df-dim 33129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |