Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusdimsum Structured version   Visualization version   GIF version

Theorem qusdimsum 33611
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusdimsum.x 𝑋 = (𝑊s 𝑈)
qusdimsum.y 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
Assertion
Ref Expression
qusdimsum ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))

Proof of Theorem qusdimsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusdimsum.y . . . 4 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
2 eqid 2729 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 lveclmod 21010 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
43adantr 480 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod)
5 simpr 484 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
6 eqid 2729 . . . 4 (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))
71, 2, 4, 5, 6quslmhm 33305 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌))
8 eqid 2729 . . . 4 (0g𝑌) = (0g𝑌)
9 eqid 2729 . . . 4 (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))
10 eqid 2729 . . . 4 (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
118, 9, 10dimkerim 33610 . . 3 ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
127, 11syldan 591 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
13 eqid 2729 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1413lsssubg 20860 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
153, 14sylan 580 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 20812 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
1817adantr 480 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel)
19 ablnsg 19726 . . . . . . . 8 (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2018, 19syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2115, 20eleqtrrd 2831 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊))
222, 6, 1, 8qusker 33295 . . . . . . 7 (𝑈 ∈ (NrmSGrp‘𝑊) → ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}) = 𝑈)
2322oveq2d 7365 . . . . . 6 (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
2421, 23syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
25 qusdimsum.x . . . . 5 𝑋 = (𝑊s 𝑈)
2624, 25eqtr4di 2782 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = 𝑋)
2726fveq2d 6826 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) = (dim‘𝑋))
281a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)))
292a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
30 ovexd 7384 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V)
31 simpl 482 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec)
3228, 29, 6, 30, 31quslem 17447 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)))
33 forn 6739 . . . . . . . 8 ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3432, 33syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3528, 29, 30, 31qusbas 17449 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌))
3634, 35eqtr2d 2765 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
3736oveq2d 7365 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s (Base‘𝑌)) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))
381ovexi 7383 . . . . . 6 𝑌 ∈ V
39 eqid 2729 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
4039ressid 17155 . . . . . 6 (𝑌 ∈ V → (𝑌s (Base‘𝑌)) = 𝑌)
4138, 40ax-mp 5 . . . . 5 (𝑌s (Base‘𝑌)) = 𝑌
4237, 41eqtr3di 2779 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌)
4342fveq2d 6826 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌))
4427, 43oveq12d 7367 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
4512, 44eqtrd 2764 1 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  {csn 4577  cmpt 5173  ccnv 5618  ran crn 5620  cima 5622  ontowfo 6480  cfv 6482  (class class class)co 7349  [cec 8623   / cqs 8624   +𝑒 cxad 13012  Basecbs 17120  s cress 17141  0gc0g 17343   /s cqus 17409  SubGrpcsubg 18999  NrmSGrpcnsg 19000   ~QG cqg 19001  Abelcabl 19660  LModclmod 20763  LSubSpclss 20834   LMHom clmhm 20923  LVecclvec 21006  dimcldim 33581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-rpss 7659  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-r1 9660  df-rank 9661  df-dju 9797  df-card 9835  df-acn 9838  df-ac 10010  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-xadd 13015  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ocomp 17182  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-imas 17412  df-qus 17413  df-mre 17488  df-mrc 17489  df-mri 17490  df-acs 17491  df-proset 18200  df-drs 18201  df-poset 18219  df-ipo 18434  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-nsg 19003  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-nzr 20398  df-subrg 20455  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lmhm 20926  df-lmim 20927  df-lbs 20979  df-lvec 21007  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-uvc 21690  df-lindf 21713  df-linds 21714  df-dim 33582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator