Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qusdimsum Structured version   Visualization version   GIF version

Theorem qusdimsum 31024
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141 (Contributed by Thierry Arnoux, 20-May-2023.)
Hypotheses
Ref Expression
qusdimsum.x 𝑋 = (𝑊s 𝑈)
qusdimsum.y 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
Assertion
Ref Expression
qusdimsum ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))

Proof of Theorem qusdimsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qusdimsum.y . . . 4 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))
2 eqid 2821 . . . 4 (Base‘𝑊) = (Base‘𝑊)
3 lveclmod 19877 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
43adantr 483 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod)
5 simpr 487 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊))
6 eqid 2821 . . . 4 (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))
71, 2, 4, 5, 6quslmhm 30924 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌))
8 eqid 2821 . . . 4 (0g𝑌) = (0g𝑌)
9 eqid 2821 . . . 4 (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))
10 eqid 2821 . . . 4 (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
118, 9, 10dimkerim 31023 . . 3 ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
127, 11syldan 593 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))))
13 eqid 2821 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
1413lsssubg 19728 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
153, 14sylan 582 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊))
16 lmodabl 19680 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
173, 16syl 17 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ Abel)
1817adantr 483 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel)
19 ablnsg 18966 . . . . . . . 8 (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2018, 19syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊))
2115, 20eleqtrrd 2916 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊))
222, 6, 1, 8qusker 30918 . . . . . . 7 (𝑈 ∈ (NrmSGrp‘𝑊) → ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}) = 𝑈)
2322oveq2d 7171 . . . . . 6 (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
2421, 23syl 17 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = (𝑊s 𝑈))
25 qusdimsum.x . . . . 5 𝑋 = (𝑊s 𝑈)
2624, 25syl6eqr 2874 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)})) = 𝑋)
2726fveq2d 6673 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) = (dim‘𝑋))
281ovexi 7189 . . . . . 6 𝑌 ∈ V
29 eqid 2821 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
3029ressid 16558 . . . . . 6 (𝑌 ∈ V → (𝑌s (Base‘𝑌)) = 𝑌)
3128, 30ax-mp 5 . . . . 5 (𝑌s (Base‘𝑌)) = 𝑌
321a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)))
332a1i 11 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊))
34 ovexd 7190 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V)
35 simpl 485 . . . . . . . . 9 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec)
3632, 33, 6, 34, 35quslem 16815 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)))
37 forn 6592 . . . . . . . 8 ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3836, 37syl 17 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈)))
3932, 33, 34, 35qusbas 16817 . . . . . . 7 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌))
4038, 39eqtr2d 2857 . . . . . 6 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))
4140oveq2d 7171 . . . . 5 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s (Base‘𝑌)) = (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))
4231, 41syl5reqr 2871 . . . 4 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌)
4342fveq2d 6673 . . 3 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌))
4427, 43oveq12d 7173 . 2 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊s ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g𝑌)}))) +𝑒 (dim‘(𝑌s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
4512, 44eqtrd 2856 1 ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4566  cmpt 5145  ccnv 5553  ran crn 5555  cima 5557  ontowfo 6352  cfv 6354  (class class class)co 7155  [cec 8286   / cqs 8287   +𝑒 cxad 12504  Basecbs 16482  s cress 16483  0gc0g 16712   /s cqus 16777  SubGrpcsubg 18272  NrmSGrpcnsg 18273   ~QG cqg 18274  Abelcabl 18906  LModclmod 19633  LSubSpclss 19702   LMHom clmhm 19790  LVecclvec 19873  dimcldim 30999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-reg 9055  ax-inf2 9103  ax-ac2 9884  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-rpss 7448  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-inf 8906  df-oi 8973  df-r1 9192  df-rank 9193  df-dju 9329  df-card 9367  df-acn 9370  df-ac 9541  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-xadd 12507  df-fz 12892  df-fzo 13033  df-seq 13369  df-hash 13690  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ocomp 16585  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-imas 16780  df-qus 16781  df-mre 16856  df-mrc 16857  df-mri 16858  df-acs 16859  df-proset 17537  df-drs 17538  df-poset 17555  df-ipo 17761  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-cntz 18446  df-lsm 18760  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-drng 19503  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-lmhm 19793  df-lmim 19794  df-lbs 19846  df-lvec 19874  df-sra 19943  df-rgmod 19944  df-nzr 20030  df-dsmm 20875  df-frlm 20890  df-uvc 20926  df-lindf 20949  df-linds 20950  df-dim 31000
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator