Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > qusdimsum | Structured version Visualization version GIF version |
Description: Let 𝑊 be a vector space, and let 𝑋 be a subspace. Then the dimension of 𝑊 is the sum of the dimension of 𝑋 and the dimension of the quotient space of 𝑋. First part of theorem 5.3 in [Lang] p. 141. (Contributed by Thierry Arnoux, 20-May-2023.) |
Ref | Expression |
---|---|
qusdimsum.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
qusdimsum.y | ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) |
Ref | Expression |
---|---|
qusdimsum | ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusdimsum.y | . . . 4 ⊢ 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈)) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | lveclmod 20368 | . . . . 5 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LMod) |
5 | simpr 485 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (LSubSp‘𝑊)) | |
6 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) | |
7 | 1, 2, 4, 5, 6 | quslmhm 31555 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) |
8 | eqid 2738 | . . . 4 ⊢ (0g‘𝑌) = (0g‘𝑌) | |
9 | eqid 2738 | . . . 4 ⊢ (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) | |
10 | eqid 2738 | . . . 4 ⊢ (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) | |
11 | 8, 9, 10 | dimkerim 31708 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) ∈ (𝑊 LMHom 𝑌)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
12 | 7, 11 | syldan 591 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))))) |
13 | eqid 2738 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
14 | 13 | lsssubg 20219 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
15 | 3, 14 | sylan 580 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (SubGrp‘𝑊)) |
16 | lmodabl 20170 | . . . . . . . . . 10 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Abel) | |
17 | 3, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ Abel) |
18 | 17 | adantr 481 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ Abel) |
19 | ablnsg 19448 | . . . . . . . 8 ⊢ (𝑊 ∈ Abel → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) | |
20 | 18, 19 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (NrmSGrp‘𝑊) = (SubGrp‘𝑊)) |
21 | 15, 20 | eleqtrrd 2842 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑈 ∈ (NrmSGrp‘𝑊)) |
22 | 2, 6, 1, 8 | qusker 31549 | . . . . . . 7 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}) = 𝑈) |
23 | 22 | oveq2d 7291 | . . . . . 6 ⊢ (𝑈 ∈ (NrmSGrp‘𝑊) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
24 | 21, 23 | syl 17 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = (𝑊 ↾s 𝑈)) |
25 | qusdimsum.x | . . . . 5 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
26 | 24, 25 | eqtr4di 2796 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)})) = 𝑋) |
27 | 26 | fveq2d 6778 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) = (dim‘𝑋)) |
28 | 1 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑌 = (𝑊 /s (𝑊 ~QG 𝑈))) |
29 | 2 | a1i 11 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑊) = (Base‘𝑊)) |
30 | ovexd 7310 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑊 ~QG 𝑈) ∈ V) | |
31 | simpl 483 | . . . . . . . . 9 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑊 ∈ LVec) | |
32 | 28, 29, 6, 30, 31 | quslem 17254 | . . . . . . . 8 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
33 | forn 6691 | . . . . . . . 8 ⊢ ((𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)):(Base‘𝑊)–onto→((Base‘𝑊) / (𝑊 ~QG 𝑈)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) | |
34 | 32, 33 | syl 17 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) = ((Base‘𝑊) / (𝑊 ~QG 𝑈))) |
35 | 28, 29, 30, 31 | qusbas 17256 | . . . . . . 7 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((Base‘𝑊) / (𝑊 ~QG 𝑈)) = (Base‘𝑌)) |
36 | 34, 35 | eqtr2d 2779 | . . . . . 6 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (Base‘𝑌) = ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) |
37 | 36 | oveq2d 7291 | . . . . 5 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s (Base‘𝑌)) = (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) |
38 | 1 | ovexi 7309 | . . . . . 6 ⊢ 𝑌 ∈ V |
39 | eqid 2738 | . . . . . . 7 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
40 | 39 | ressid 16954 | . . . . . 6 ⊢ (𝑌 ∈ V → (𝑌 ↾s (Base‘𝑌)) = 𝑌) |
41 | 38, 40 | ax-mp 5 | . . . . 5 ⊢ (𝑌 ↾s (Base‘𝑌)) = 𝑌 |
42 | 37, 41 | eqtr3di 2793 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))) = 𝑌) |
43 | 42 | fveq2d 6778 | . . 3 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)))) = (dim‘𝑌)) |
44 | 27, 43 | oveq12d 7293 | . 2 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → ((dim‘(𝑊 ↾s (◡(𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈)) “ {(0g‘𝑌)}))) +𝑒 (dim‘(𝑌 ↾s ran (𝑥 ∈ (Base‘𝑊) ↦ [𝑥](𝑊 ~QG 𝑈))))) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
45 | 12, 44 | eqtrd 2778 | 1 ⊢ ((𝑊 ∈ LVec ∧ 𝑈 ∈ (LSubSp‘𝑊)) → (dim‘𝑊) = ((dim‘𝑋) +𝑒 (dim‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {csn 4561 ↦ cmpt 5157 ◡ccnv 5588 ran crn 5590 “ cima 5592 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 [cec 8496 / cqs 8497 +𝑒 cxad 12846 Basecbs 16912 ↾s cress 16941 0gc0g 17150 /s cqus 17216 SubGrpcsubg 18749 NrmSGrpcnsg 18750 ~QG cqg 18751 Abelcabl 19387 LModclmod 20123 LSubSpclss 20193 LMHom clmhm 20281 LVecclvec 20364 dimcldim 31684 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-reg 9351 ax-inf2 9399 ax-ac2 10219 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-rpss 7576 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-ec 8500 df-qs 8504 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-inf 9202 df-oi 9269 df-r1 9522 df-rank 9523 df-dju 9659 df-card 9697 df-acn 9700 df-ac 9872 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-dec 12438 df-uz 12583 df-xadd 12849 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ocomp 16983 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-imas 17219 df-qus 17220 df-mre 17295 df-mrc 17296 df-mri 17297 df-acs 17298 df-proset 18013 df-drs 18014 df-poset 18031 df-ipo 18246 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-nsg 18753 df-eqg 18754 df-ghm 18832 df-cntz 18923 df-lsm 19241 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-oppr 19862 df-dvdsr 19883 df-unit 19884 df-invr 19914 df-drng 19993 df-subrg 20022 df-lmod 20125 df-lss 20194 df-lsp 20234 df-lmhm 20284 df-lmim 20285 df-lbs 20337 df-lvec 20365 df-sra 20434 df-rgmod 20435 df-nzr 20529 df-dsmm 20939 df-frlm 20954 df-uvc 20990 df-lindf 21013 df-linds 21014 df-dim 31685 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |