| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) | 
| 2 |  | dprd0.0 | . . 3
⊢  0 =
(0g‘𝐺) | 
| 3 |  | eqid 2736 | . . 3
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) | 
| 4 |  | simpl 482 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝐺 ∈ Grp) | 
| 5 |  | simpr 484 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝐼 ∈ 𝑉) | 
| 6 | 2 | 0subg 19170 | . . . . 5
⊢ (𝐺 ∈ Grp → { 0 } ∈
(SubGrp‘𝐺)) | 
| 7 | 6 | ad2antrr 726 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑥 ∈ 𝐼) → { 0 } ∈
(SubGrp‘𝐺)) | 
| 8 | 7 | fmpttd 7134 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝑥 ∈ 𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺)) | 
| 9 |  | eqid 2736 | . . . . . . . . . . 11
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 10 | 9, 2 | grpidcl 18984 | . . . . . . . . . 10
⊢ (𝐺 ∈ Grp → 0 ∈
(Base‘𝐺)) | 
| 11 | 10 | adantr 480 | . . . . . . . . 9
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 0 ∈ (Base‘𝐺)) | 
| 12 | 11 | snssd 4808 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → { 0 } ⊆
(Base‘𝐺)) | 
| 13 | 9, 1 | cntzsubg 19358 | . . . . . . . 8
⊢ ((𝐺 ∈ Grp ∧ { 0 } ⊆
(Base‘𝐺)) →
((Cntz‘𝐺)‘{
0 })
∈ (SubGrp‘𝐺)) | 
| 14 | 12, 13 | syldan 591 | . . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈
(SubGrp‘𝐺)) | 
| 15 | 2 | subg0cl 19153 | . . . . . . 7
⊢
(((Cntz‘𝐺)‘{ 0 }) ∈
(SubGrp‘𝐺) →
0 ∈
((Cntz‘𝐺)‘{
0
})) | 
| 16 | 14, 15 | syl 17 | . . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 })) | 
| 17 | 16 | snssd 4808 | . . . . 5
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → { 0 } ⊆
((Cntz‘𝐺)‘{
0
})) | 
| 18 | 17 | adantr 480 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → { 0 } ⊆
((Cntz‘𝐺)‘{
0
})) | 
| 19 |  | simpr1 1194 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → 𝑦 ∈ 𝐼) | 
| 20 |  | eqidd 2737 | . . . . . 6
⊢ (𝑥 = 𝑦 → { 0 } = { 0 }) | 
| 21 |  | eqid 2736 | . . . . . 6
⊢ (𝑥 ∈ 𝐼 ↦ { 0 }) = (𝑥 ∈ 𝐼 ↦ { 0 }) | 
| 22 |  | snex 5435 | . . . . . 6
⊢ { 0 } ∈
V | 
| 23 | 20, 21, 22 | fvmpt3i 7020 | . . . . 5
⊢ (𝑦 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) = { 0 }) | 
| 24 | 19, 23 | syl 17 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) = { 0 }) | 
| 25 |  | simpr2 1195 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → 𝑧 ∈ 𝐼) | 
| 26 |  | eqidd 2737 | . . . . . . 7
⊢ (𝑥 = 𝑧 → { 0 } = { 0 }) | 
| 27 | 26, 21, 22 | fvmpt3i 7020 | . . . . . 6
⊢ (𝑧 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑧) = { 0 }) | 
| 28 | 25, 27 | syl 17 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑧) = { 0 }) | 
| 29 | 28 | fveq2d 6909 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → ((Cntz‘𝐺)‘((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 })) | 
| 30 | 18, 24, 29 | 3sstr4d 4038 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝑦 ∈ 𝐼 ∧ 𝑧 ∈ 𝐼 ∧ 𝑦 ≠ 𝑧)) → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑧))) | 
| 31 | 23 | adantl 481 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) = { 0 }) | 
| 32 | 31 | ineq1d 4218 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))) | 
| 33 | 9 | subgacs 19180 | . . . . . . . . . . 11
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) | 
| 34 | 33 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺))) | 
| 35 | 34 | acsmred 17700 | . . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) | 
| 36 |  | imassrn 6088 | . . . . . . . . . . 11
⊢ ((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥 ∈ 𝐼 ↦ { 0 }) | 
| 37 | 8 | adantr 480 | . . . . . . . . . . . . 13
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (𝑥 ∈ 𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺)) | 
| 38 | 37 | frnd 6743 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ran (𝑥 ∈ 𝐼 ↦ { 0 }) ⊆
(SubGrp‘𝐺)) | 
| 39 |  | mresspw 17636 | . . . . . . . . . . . . 13
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) | 
| 40 | 35, 39 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺)) | 
| 41 | 38, 40 | sstrd 3993 | . . . . . . . . . . 11
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ran (𝑥 ∈ 𝐼 ↦ { 0 }) ⊆ 𝒫
(Base‘𝐺)) | 
| 42 | 36, 41 | sstrid 3994 | . . . . . . . . . 10
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺)) | 
| 43 |  | sspwuni 5099 | . . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ∪ ((𝑥
∈ 𝐼 ↦ { 0 }) “
(𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) | 
| 44 | 42, 43 | sylib 218 | . . . . . . . . 9
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) | 
| 45 | 3 | mrccl 17655 | . . . . . . . . 9
⊢
(((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) ∧ ∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑥
∈ 𝐼 ↦ { 0 }) “
(𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺)) | 
| 46 | 35, 44, 45 | syl2anc 584 | . . . . . . . 8
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑥
∈ 𝐼 ↦ { 0 }) “
(𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺)) | 
| 47 | 2 | subg0cl 19153 | . . . . . . . 8
⊢
(((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) | 
| 48 | 46, 47 | syl 17 | . . . . . . 7
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → 0 ∈
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) | 
| 49 | 48 | snssd 4808 | . . . . . 6
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → { 0 } ⊆
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) | 
| 50 |  | dfss2 3968 | . . . . . 6
⊢ ({ 0 } ⊆
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 }) | 
| 51 | 49, 50 | sylib 218 | . . . . 5
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ({ 0 } ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 }) | 
| 52 | 32, 51 | eqtrd 2776 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 }) | 
| 53 |  | eqimss 4041 | . . . 4
⊢ ((((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 }) | 
| 54 | 52, 53 | syl 17 | . . 3
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → (((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ∩
((mrCls‘(SubGrp‘𝐺))‘∪
((𝑥 ∈ 𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 }) | 
| 55 | 1, 2, 3, 4, 5, 8, 30, 54 | dmdprdd 20020 | . 2
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 })) | 
| 56 | 21, 7 | dmmptd 6712 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → dom (𝑥 ∈ 𝐼 ↦ { 0 }) = 𝐼) | 
| 57 | 6 | adantr 480 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → { 0 } ∈
(SubGrp‘𝐺)) | 
| 58 |  | eqimss 4041 | . . . . 5
⊢ (((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 }) | 
| 59 | 31, 58 | syl 17 | . . . 4
⊢ (((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ 𝑦 ∈ 𝐼) → ((𝑥 ∈ 𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 }) | 
| 60 | 55, 56, 57, 59 | dprdlub 20047 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) ⊆ { 0
}) | 
| 61 |  | dprdsubg 20045 | . . . . 5
⊢ (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) ∈
(SubGrp‘𝐺)) | 
| 62 | 2 | subg0cl 19153 | . . . . 5
⊢ ((𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) ∈
(SubGrp‘𝐺) →
0 ∈
(𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 }))) | 
| 63 | 55, 61, 62 | 3syl 18 | . . . 4
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 0 ∈ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 }))) | 
| 64 | 63 | snssd 4808 | . . 3
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 }))) | 
| 65 | 60, 64 | eqssd 4000 | . 2
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 }) | 
| 66 | 55, 65 | jca 511 | 1
⊢ ((𝐺 ∈ Grp ∧ 𝐼 ∈ 𝑉) → (𝐺dom DProd (𝑥 ∈ 𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥 ∈ 𝐼 ↦ { 0 })) = { 0 })) |