MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdz Structured version   Visualization version   GIF version

Theorem dprdz 19809
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprd0.0 0 = (0g𝐺)
Assertion
Ref Expression
dprdz ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Distinct variable groups:   𝑥, 0   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉

Proof of Theorem dprdz
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 dprd0.0 . . 3 0 = (0g𝐺)
3 eqid 2736 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺 ∈ Grp)
5 simpr 485 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐼𝑉)
620subg 18953 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
76ad2antrr 724 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑥𝐼) → { 0 } ∈ (SubGrp‘𝐺))
87fmpttd 7063 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
9 eqid 2736 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
109, 2grpidcl 18778 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1110adantr 481 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (Base‘𝐺))
1211snssd 4769 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (Base‘𝐺))
139, 1cntzsubg 19117 . . . . . . . 8 ((𝐺 ∈ Grp ∧ { 0 } ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
1412, 13syldan 591 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
152subg0cl 18936 . . . . . . 7 (((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1614, 15syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1716snssd 4769 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
1817adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
19 simpr1 1194 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑦𝐼)
20 eqidd 2737 . . . . . 6 (𝑥 = 𝑦 → { 0 } = { 0 })
21 eqid 2736 . . . . . 6 (𝑥𝐼 ↦ { 0 }) = (𝑥𝐼 ↦ { 0 })
22 snex 5388 . . . . . 6 { 0 } ∈ V
2320, 21, 22fvmpt3i 6953 . . . . 5 (𝑦𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
2419, 23syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
25 simpr2 1195 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑧𝐼)
26 eqidd 2737 . . . . . . 7 (𝑥 = 𝑧 → { 0 } = { 0 })
2726, 21, 22fvmpt3i 6953 . . . . . 6 (𝑧𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2825, 27syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2928fveq2d 6846 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 }))
3018, 24, 293sstr4d 3991 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)))
3123adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
3231ineq1d 4171 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))))
339subgacs 18963 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3433ad2antrr 724 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3534acsmred 17536 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
36 imassrn 6024 . . . . . . . . . . 11 ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥𝐼 ↦ { 0 })
378adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
3837frnd 6676 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
39 mresspw 17472 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4035, 39syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4138, 40sstrd 3954 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ 𝒫 (Base‘𝐺))
4236, 41sstrid 3955 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺))
43 sspwuni 5060 . . . . . . . . . 10 (((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
4442, 43sylib 217 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
453mrccl 17491 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
4635, 44, 45syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
472subg0cl 18936 . . . . . . . 8 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4846, 47syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4948snssd 4769 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → { 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
50 df-ss 3927 . . . . . 6 ({ 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5149, 50sylib 217 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5232, 51eqtrd 2776 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
53 eqimss 4000 . . . 4 ((((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
5452, 53syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
551, 2, 3, 4, 5, 8, 30, 54dmdprdd 19778 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺dom DProd (𝑥𝐼 ↦ { 0 }))
5621, 7dmmptd 6646 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → dom (𝑥𝐼 ↦ { 0 }) = 𝐼)
576adantr 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ∈ (SubGrp‘𝐺))
58 eqimss 4000 . . . . 5 (((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
5931, 58syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6055, 56, 57, 59dprdlub 19805 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ⊆ { 0 })
61 dprdsubg 19803 . . . . 5 (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺))
622subg0cl 18936 . . . . 5 ((𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6355, 61, 623syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6463snssd 4769 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6560, 64eqssd 3961 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 })
6655, 65jca 512 1 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  cdif 3907  cin 3909  wss 3910  𝒫 cpw 4560  {csn 4586   cuni 4865   class class class wbr 5105  cmpt 5188  dom cdm 5633  ran crn 5634  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  Basecbs 17083  0gc0g 17321  Moorecmre 17462  mrClscmrc 17463  ACScacs 17465  Grpcgrp 18748  SubGrpcsubg 18922  Cntzccntz 19095   DProd cdprd 19772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-gsum 17324  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-gim 19049  df-cntz 19097  df-oppg 19124  df-cmn 19564  df-dprd 19774
This theorem is referenced by:  dprd0  19810
  Copyright terms: Public domain W3C validator