MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdz Structured version   Visualization version   GIF version

Theorem dprdz 18869
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprd0.0 0 = (0g𝐺)
Assertion
Ref Expression
dprdz ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Distinct variable groups:   𝑥, 0   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉

Proof of Theorem dprdz
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2795 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 dprd0.0 . . 3 0 = (0g𝐺)
3 eqid 2795 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 simpl 483 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺 ∈ Grp)
5 simpr 485 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐼𝑉)
620subg 18058 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
76ad2antrr 722 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑥𝐼) → { 0 } ∈ (SubGrp‘𝐺))
87fmpttd 6742 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
9 eqid 2795 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
109, 2grpidcl 17889 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1110adantr 481 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (Base‘𝐺))
1211snssd 4649 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (Base‘𝐺))
139, 1cntzsubg 18208 . . . . . . . 8 ((𝐺 ∈ Grp ∧ { 0 } ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
1412, 13syldan 591 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
152subg0cl 18041 . . . . . . 7 (((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1614, 15syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1716snssd 4649 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
1817adantr 481 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
19 simpr1 1187 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑦𝐼)
20 eqidd 2796 . . . . . 6 (𝑥 = 𝑦 → { 0 } = { 0 })
21 eqid 2795 . . . . . 6 (𝑥𝐼 ↦ { 0 }) = (𝑥𝐼 ↦ { 0 })
22 snex 5223 . . . . . 6 { 0 } ∈ V
2320, 21, 22fvmpt3i 6640 . . . . 5 (𝑦𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
2419, 23syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
25 simpr2 1188 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑧𝐼)
26 eqidd 2796 . . . . . . 7 (𝑥 = 𝑧 → { 0 } = { 0 })
2726, 21, 22fvmpt3i 6640 . . . . . 6 (𝑧𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2825, 27syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2928fveq2d 6542 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 }))
3018, 24, 293sstr4d 3935 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)))
3123adantl 482 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
3231ineq1d 4108 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))))
339subgacs 18068 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3433ad2antrr 722 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3534acsmred 16756 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
36 imassrn 5817 . . . . . . . . . . 11 ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥𝐼 ↦ { 0 })
378adantr 481 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
3837frnd 6389 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
39 mresspw 16692 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4035, 39syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4138, 40sstrd 3899 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ 𝒫 (Base‘𝐺))
4236, 41syl5ss 3900 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺))
43 sspwuni 4921 . . . . . . . . . 10 (((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
4442, 43sylib 219 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
453mrccl 16711 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
4635, 44, 45syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
472subg0cl 18041 . . . . . . . 8 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4846, 47syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4948snssd 4649 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → { 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
50 df-ss 3874 . . . . . 6 ({ 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5149, 50sylib 219 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5232, 51eqtrd 2831 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
53 eqimss 3944 . . . 4 ((((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
5452, 53syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
551, 2, 3, 4, 5, 8, 30, 54dmdprdd 18838 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺dom DProd (𝑥𝐼 ↦ { 0 }))
5621, 7dmmptd 6361 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → dom (𝑥𝐼 ↦ { 0 }) = 𝐼)
576adantr 481 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ∈ (SubGrp‘𝐺))
58 eqimss 3944 . . . . 5 (((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
5931, 58syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6055, 56, 57, 59dprdlub 18865 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ⊆ { 0 })
61 dprdsubg 18863 . . . . 5 (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺))
622subg0cl 18041 . . . . 5 ((𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6355, 61, 623syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6463snssd 4649 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6560, 64eqssd 3906 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 })
6655, 65jca 512 1 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1080   = wceq 1522  wcel 2081  wne 2984  cdif 3856  cin 3858  wss 3859  𝒫 cpw 4453  {csn 4472   cuni 4745   class class class wbr 4962  cmpt 5041  dom cdm 5443  ran crn 5444  cima 5446  wf 6221  cfv 6225  (class class class)co 7016  Basecbs 16312  0gc0g 16542  Moorecmre 16682  mrClscmrc 16683  ACScacs 16685  Grpcgrp 17861  SubGrpcsubg 18027  Cntzccntz 18186   DProd cdprd 18832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-iin 4828  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-of 7267  df-om 7437  df-1st 7545  df-2nd 7546  df-supp 7682  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-ixp 8311  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-fsupp 8680  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-n0 11746  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-seq 13220  df-hash 13541  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-0g 16544  df-gsum 16545  df-mre 16686  df-mrc 16687  df-acs 16689  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-ghm 18097  df-gim 18140  df-cntz 18188  df-oppg 18215  df-cmn 18635  df-dprd 18834
This theorem is referenced by:  dprd0  18870
  Copyright terms: Public domain W3C validator