MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdz Structured version   Visualization version   GIF version

Theorem dprdz 19548
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprd0.0 0 = (0g𝐺)
Assertion
Ref Expression
dprdz ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Distinct variable groups:   𝑥, 0   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉

Proof of Theorem dprdz
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 dprd0.0 . . 3 0 = (0g𝐺)
3 eqid 2738 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺 ∈ Grp)
5 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐼𝑉)
620subg 18695 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
76ad2antrr 722 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑥𝐼) → { 0 } ∈ (SubGrp‘𝐺))
87fmpttd 6971 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
9 eqid 2738 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
109, 2grpidcl 18522 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1110adantr 480 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (Base‘𝐺))
1211snssd 4739 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (Base‘𝐺))
139, 1cntzsubg 18858 . . . . . . . 8 ((𝐺 ∈ Grp ∧ { 0 } ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
1412, 13syldan 590 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
152subg0cl 18678 . . . . . . 7 (((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1614, 15syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1716snssd 4739 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
1817adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
19 simpr1 1192 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑦𝐼)
20 eqidd 2739 . . . . . 6 (𝑥 = 𝑦 → { 0 } = { 0 })
21 eqid 2738 . . . . . 6 (𝑥𝐼 ↦ { 0 }) = (𝑥𝐼 ↦ { 0 })
22 snex 5349 . . . . . 6 { 0 } ∈ V
2320, 21, 22fvmpt3i 6862 . . . . 5 (𝑦𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
2419, 23syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
25 simpr2 1193 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑧𝐼)
26 eqidd 2739 . . . . . . 7 (𝑥 = 𝑧 → { 0 } = { 0 })
2726, 21, 22fvmpt3i 6862 . . . . . 6 (𝑧𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2825, 27syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2928fveq2d 6760 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 }))
3018, 24, 293sstr4d 3964 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)))
3123adantl 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
3231ineq1d 4142 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))))
339subgacs 18704 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3433ad2antrr 722 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3534acsmred 17282 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
36 imassrn 5969 . . . . . . . . . . 11 ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥𝐼 ↦ { 0 })
378adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
3837frnd 6592 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
39 mresspw 17218 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4035, 39syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4138, 40sstrd 3927 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ 𝒫 (Base‘𝐺))
4236, 41sstrid 3928 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺))
43 sspwuni 5025 . . . . . . . . . 10 (((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
4442, 43sylib 217 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
453mrccl 17237 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
4635, 44, 45syl2anc 583 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
472subg0cl 18678 . . . . . . . 8 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4846, 47syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4948snssd 4739 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → { 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
50 df-ss 3900 . . . . . 6 ({ 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5149, 50sylib 217 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5232, 51eqtrd 2778 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
53 eqimss 3973 . . . 4 ((((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
5452, 53syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
551, 2, 3, 4, 5, 8, 30, 54dmdprdd 19517 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺dom DProd (𝑥𝐼 ↦ { 0 }))
5621, 7dmmptd 6562 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → dom (𝑥𝐼 ↦ { 0 }) = 𝐼)
576adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ∈ (SubGrp‘𝐺))
58 eqimss 3973 . . . . 5 (((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
5931, 58syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6055, 56, 57, 59dprdlub 19544 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ⊆ { 0 })
61 dprdsubg 19542 . . . . 5 (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺))
622subg0cl 18678 . . . . 5 ((𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6355, 61, 623syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6463snssd 4739 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6560, 64eqssd 3934 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 })
6655, 65jca 511 1 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cin 3882  wss 3883  𝒫 cpw 4530  {csn 4558   cuni 4836   class class class wbr 5070  cmpt 5153  dom cdm 5580  ran crn 5581  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  0gc0g 17067  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Grpcgrp 18492  SubGrpcsubg 18664  Cntzccntz 18836   DProd cdprd 19511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-gsum 17070  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-gim 18790  df-cntz 18838  df-oppg 18865  df-cmn 19303  df-dprd 19513
This theorem is referenced by:  dprd0  19549
  Copyright terms: Public domain W3C validator