MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdz Structured version   Visualization version   GIF version

Theorem dprdz 19944
Description: A family consisting entirely of trivial groups is an internal direct product, the product of which is the trivial subgroup. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypothesis
Ref Expression
dprd0.0 0 = (0g𝐺)
Assertion
Ref Expression
dprdz ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Distinct variable groups:   𝑥, 0   𝑥,𝐺   𝑥,𝐼   𝑥,𝑉

Proof of Theorem dprdz
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 dprd0.0 . . 3 0 = (0g𝐺)
3 eqid 2731 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 simpl 482 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺 ∈ Grp)
5 simpr 484 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐼𝑉)
620subg 19064 . . . . 5 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
76ad2antrr 726 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑥𝐼) → { 0 } ∈ (SubGrp‘𝐺))
87fmpttd 7048 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
9 eqid 2731 . . . . . . . . . . 11 (Base‘𝐺) = (Base‘𝐺)
109, 2grpidcl 18878 . . . . . . . . . 10 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
1110adantr 480 . . . . . . . . 9 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (Base‘𝐺))
1211snssd 4758 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (Base‘𝐺))
139, 1cntzsubg 19251 . . . . . . . 8 ((𝐺 ∈ Grp ∧ { 0 } ⊆ (Base‘𝐺)) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
1412, 13syldan 591 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → ((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺))
152subg0cl 19047 . . . . . . 7 (((Cntz‘𝐺)‘{ 0 }) ∈ (SubGrp‘𝐺) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1614, 15syl 17 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ ((Cntz‘𝐺)‘{ 0 }))
1716snssd 4758 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
1817adantr 480 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → { 0 } ⊆ ((Cntz‘𝐺)‘{ 0 }))
19 simpr1 1195 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑦𝐼)
20 eqidd 2732 . . . . . 6 (𝑥 = 𝑦 → { 0 } = { 0 })
21 eqid 2731 . . . . . 6 (𝑥𝐼 ↦ { 0 }) = (𝑥𝐼 ↦ { 0 })
22 snex 5372 . . . . . 6 { 0 } ∈ V
2320, 21, 22fvmpt3i 6934 . . . . 5 (𝑦𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
2419, 23syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
25 simpr2 1196 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → 𝑧𝐼)
26 eqidd 2732 . . . . . . 7 (𝑥 = 𝑧 → { 0 } = { 0 })
2726, 21, 22fvmpt3i 6934 . . . . . 6 (𝑧𝐼 → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2825, 27syl 17 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑧) = { 0 })
2928fveq2d 6826 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)) = ((Cntz‘𝐺)‘{ 0 }))
3018, 24, 293sstr4d 3985 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ (𝑦𝐼𝑧𝐼𝑦𝑧)) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ ((Cntz‘𝐺)‘((𝑥𝐼 ↦ { 0 })‘𝑧)))
3123adantl 481 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 })
3231ineq1d 4166 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))))
339subgacs 19073 . . . . . . . . . . 11 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3433ad2antrr 726 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
3534acsmred 17562 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
36 imassrn 6019 . . . . . . . . . . 11 ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ ran (𝑥𝐼 ↦ { 0 })
378adantr 480 . . . . . . . . . . . . 13 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (𝑥𝐼 ↦ { 0 }):𝐼⟶(SubGrp‘𝐺))
3837frnd 6659 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ (SubGrp‘𝐺))
39 mresspw 17494 . . . . . . . . . . . . 13 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4035, 39syl 17 . . . . . . . . . . . 12 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (SubGrp‘𝐺) ⊆ 𝒫 (Base‘𝐺))
4138, 40sstrd 3940 . . . . . . . . . . 11 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ran (𝑥𝐼 ↦ { 0 }) ⊆ 𝒫 (Base‘𝐺))
4236, 41sstrid 3941 . . . . . . . . . 10 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺))
43 sspwuni 5046 . . . . . . . . . 10 (((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ 𝒫 (Base‘𝐺) ↔ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
4442, 43sylib 218 . . . . . . . . 9 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺))
453mrccl 17517 . . . . . . . . 9 (((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) ∧ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})) ⊆ (Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
4635, 44, 45syl2anc 584 . . . . . . . 8 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺))
472subg0cl 19047 . . . . . . . 8 (((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ∈ (SubGrp‘𝐺) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4846, 47syl 17 . . . . . . 7 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → 0 ∈ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
4948snssd 4758 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → { 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))))
50 dfss2 3915 . . . . . 6 ({ 0 } ⊆ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦}))) ↔ ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5149, 50sylib 218 . . . . 5 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ({ 0 } ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
5232, 51eqtrd 2766 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 })
53 eqimss 3988 . . . 4 ((((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) = { 0 } → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
5452, 53syl 17 . . 3 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → (((𝑥𝐼 ↦ { 0 })‘𝑦) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑥𝐼 ↦ { 0 }) “ (𝐼 ∖ {𝑦})))) ⊆ { 0 })
551, 2, 3, 4, 5, 8, 30, 54dmdprdd 19913 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 𝐺dom DProd (𝑥𝐼 ↦ { 0 }))
5621, 7dmmptd 6626 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → dom (𝑥𝐼 ↦ { 0 }) = 𝐼)
576adantr 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ∈ (SubGrp‘𝐺))
58 eqimss 3988 . . . . 5 (((𝑥𝐼 ↦ { 0 })‘𝑦) = { 0 } → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
5931, 58syl 17 . . . 4 (((𝐺 ∈ Grp ∧ 𝐼𝑉) ∧ 𝑦𝐼) → ((𝑥𝐼 ↦ { 0 })‘𝑦) ⊆ { 0 })
6055, 56, 57, 59dprdlub 19940 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ⊆ { 0 })
61 dprdsubg 19938 . . . . 5 (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺))
622subg0cl 19047 . . . . 5 ((𝐺 DProd (𝑥𝐼 ↦ { 0 })) ∈ (SubGrp‘𝐺) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6355, 61, 623syl 18 . . . 4 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → 0 ∈ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6463snssd 4758 . . 3 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → { 0 } ⊆ (𝐺 DProd (𝑥𝐼 ↦ { 0 })))
6560, 64eqssd 3947 . 2 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 })
6655, 65jca 511 1 ((𝐺 ∈ Grp ∧ 𝐼𝑉) → (𝐺dom DProd (𝑥𝐼 ↦ { 0 }) ∧ (𝐺 DProd (𝑥𝐼 ↦ { 0 })) = { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  cin 3896  wss 3897  𝒫 cpw 4547  {csn 4573   cuni 4856   class class class wbr 5089  cmpt 5170  dom cdm 5614  ran crn 5615  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  Basecbs 17120  0gc0g 17343  Moorecmre 17484  mrClscmrc 17485  ACScacs 17487  Grpcgrp 18846  SubGrpcsubg 19033  Cntzccntz 19227   DProd cdprd 19907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-ghm 19125  df-gim 19171  df-cntz 19229  df-oppg 19258  df-cmn 19694  df-dprd 19909
This theorem is referenced by:  dprd0  19945
  Copyright terms: Public domain W3C validator