![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cycsubg2 | Structured version Visualization version GIF version |
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cycsubg2.x | β’ π = (BaseβπΊ) |
cycsubg2.t | β’ Β· = (.gβπΊ) |
cycsubg2.f | β’ πΉ = (π₯ β β€ β¦ (π₯ Β· π΄)) |
cycsubg2.k | β’ πΎ = (mrClsβ(SubGrpβπΊ)) |
Ref | Expression |
---|---|
cycsubg2 | β’ ((πΊ β Grp β§ π΄ β π) β (πΎβ{π΄}) = ran πΉ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4787 | . . . . . 6 β’ (π΄ β π β (π΄ β π¦ β {π΄} β π¦)) | |
2 | 1 | bicomd 222 | . . . . 5 β’ (π΄ β π β ({π΄} β π¦ β π΄ β π¦)) |
3 | 2 | adantl 482 | . . . 4 β’ ((πΊ β Grp β§ π΄ β π) β ({π΄} β π¦ β π΄ β π¦)) |
4 | 3 | rabbidv 3440 | . . 3 β’ ((πΊ β Grp β§ π΄ β π) β {π¦ β (SubGrpβπΊ) β£ {π΄} β π¦} = {π¦ β (SubGrpβπΊ) β£ π΄ β π¦}) |
5 | 4 | inteqd 4955 | . 2 β’ ((πΊ β Grp β§ π΄ β π) β β© {π¦ β (SubGrpβπΊ) β£ {π΄} β π¦} = β© {π¦ β (SubGrpβπΊ) β£ π΄ β π¦}) |
6 | cycsubg2.x | . . . . 5 β’ π = (BaseβπΊ) | |
7 | 6 | subgacs 19040 | . . . 4 β’ (πΊ β Grp β (SubGrpβπΊ) β (ACSβπ)) |
8 | 7 | acsmred 17599 | . . 3 β’ (πΊ β Grp β (SubGrpβπΊ) β (Mooreβπ)) |
9 | snssi 4811 | . . 3 β’ (π΄ β π β {π΄} β π) | |
10 | cycsubg2.k | . . . 4 β’ πΎ = (mrClsβ(SubGrpβπΊ)) | |
11 | 10 | mrcval 17553 | . . 3 β’ (((SubGrpβπΊ) β (Mooreβπ) β§ {π΄} β π) β (πΎβ{π΄}) = β© {π¦ β (SubGrpβπΊ) β£ {π΄} β π¦}) |
12 | 8, 9, 11 | syl2an 596 | . 2 β’ ((πΊ β Grp β§ π΄ β π) β (πΎβ{π΄}) = β© {π¦ β (SubGrpβπΊ) β£ {π΄} β π¦}) |
13 | cycsubg2.t | . . 3 β’ Β· = (.gβπΊ) | |
14 | cycsubg2.f | . . 3 β’ πΉ = (π₯ β β€ β¦ (π₯ Β· π΄)) | |
15 | 6, 13, 14 | cycsubg 19084 | . 2 β’ ((πΊ β Grp β§ π΄ β π) β ran πΉ = β© {π¦ β (SubGrpβπΊ) β£ π΄ β π¦}) |
16 | 5, 12, 15 | 3eqtr4d 2782 | 1 β’ ((πΊ β Grp β§ π΄ β π) β (πΎβ{π΄}) = ran πΉ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 {crab 3432 β wss 3948 {csn 4628 β© cint 4950 β¦ cmpt 5231 ran crn 5677 βcfv 6543 (class class class)co 7408 β€cz 12557 Basecbs 17143 Moorecmre 17525 mrClscmrc 17526 Grpcgrp 18818 .gcmg 18949 SubGrpcsubg 18999 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-seq 13966 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mre 17529 df-mrc 17530 df-acs 17532 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-grp 18821 df-minusg 18822 df-mulg 18950 df-subg 19002 |
This theorem is referenced by: odf1o1 19439 odf1o2 19440 cycsubgcyg2 19769 pgpfac1lem2 19944 pgpfac1lem3 19946 pgpfac1lem4 19947 |
Copyright terms: Public domain | W3C validator |