Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubg2 | Structured version Visualization version GIF version |
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
Ref | Expression |
---|---|
cycsubg2.x | ⊢ 𝑋 = (Base‘𝐺) |
cycsubg2.t | ⊢ · = (.g‘𝐺) |
cycsubg2.f | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
cycsubg2.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
cycsubg2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssg 4736 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑦 ↔ {𝐴} ⊆ 𝑦)) | |
2 | 1 | bicomd 222 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → ({𝐴} ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦)) |
3 | 2 | adantl 483 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ({𝐴} ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦)) |
4 | 3 | rabbidv 3412 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
5 | 4 | inteqd 4904 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
6 | cycsubg2.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
7 | 6 | subgacs 18886 | . . . 4 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋)) |
8 | 7 | acsmred 17463 | . . 3 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
9 | snssi 4760 | . . 3 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) | |
10 | cycsubg2.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
11 | 10 | mrcval 17417 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦}) |
12 | 8, 9, 11 | syl2an 597 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦}) |
13 | cycsubg2.t | . . 3 ⊢ · = (.g‘𝐺) | |
14 | cycsubg2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
15 | 6, 13, 14 | cycsubg 18924 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
16 | 5, 12, 15 | 3eqtr4d 2787 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {crab 3404 ⊆ wss 3902 {csn 4578 ∩ cint 4899 ↦ cmpt 5180 ran crn 5626 ‘cfv 6484 (class class class)co 7342 ℤcz 12425 Basecbs 17010 Moorecmre 17389 mrClscmrc 17390 Grpcgrp 18674 .gcmg 18797 SubGrpcsubg 18846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-iin 4949 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-z 12426 df-uz 12689 df-fz 13346 df-seq 13828 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-0g 17250 df-mre 17393 df-mrc 17394 df-acs 17396 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-mulg 18798 df-subg 18849 |
This theorem is referenced by: odf1o1 19274 odf1o2 19275 cycsubgcyg2 19598 pgpfac1lem2 19773 pgpfac1lem3 19775 pgpfac1lem4 19776 |
Copyright terms: Public domain | W3C validator |