| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubg2 | Structured version Visualization version GIF version | ||
| Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| Ref | Expression |
|---|---|
| cycsubg2.x | ⊢ 𝑋 = (Base‘𝐺) |
| cycsubg2.t | ⊢ · = (.g‘𝐺) |
| cycsubg2.f | ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) |
| cycsubg2.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| cycsubg2 | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssg 4764 | . . . . . 6 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ 𝑦 ↔ {𝐴} ⊆ 𝑦)) | |
| 2 | 1 | bicomd 223 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → ({𝐴} ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦)) |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ({𝐴} ⊆ 𝑦 ↔ 𝐴 ∈ 𝑦)) |
| 4 | 3 | rabbidv 3428 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
| 5 | 4 | inteqd 4932 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
| 6 | cycsubg2.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 7 | 6 | subgacs 19149 | . . . 4 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋)) |
| 8 | 7 | acsmred 17673 | . . 3 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
| 9 | snssi 4789 | . . 3 ⊢ (𝐴 ∈ 𝑋 → {𝐴} ⊆ 𝑋) | |
| 10 | cycsubg2.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 11 | 10 | mrcval 17627 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦}) |
| 12 | 8, 9, 11 | syl2an 596 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦}) |
| 13 | cycsubg2.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 14 | cycsubg2.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴)) | |
| 15 | 6, 13, 14 | cycsubg 19196 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ran 𝐹 = ∩ {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴 ∈ 𝑦}) |
| 16 | 5, 12, 15 | 3eqtr4d 2781 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐾‘{𝐴}) = ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 ⊆ wss 3931 {csn 4606 ∩ cint 4927 ↦ cmpt 5206 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ℤcz 12593 Basecbs 17233 Moorecmre 17599 mrClscmrc 17600 Grpcgrp 18921 .gcmg 19055 SubGrpcsubg 19108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-seq 14025 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-mulg 19056 df-subg 19111 |
| This theorem is referenced by: odf1o1 19558 odf1o2 19559 cycsubgcyg2 19888 pgpfac1lem2 20063 pgpfac1lem3 20065 pgpfac1lem4 20066 |
| Copyright terms: Public domain | W3C validator |