MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubg2 Structured version   Visualization version   GIF version

Theorem cycsubg2 19206
Description: The subgroup generated by an element is exhausted by its multiples. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cycsubg2.x 𝑋 = (Base‘𝐺)
cycsubg2.t · = (.g𝐺)
cycsubg2.f 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
cycsubg2.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
cycsubg2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran 𝐹)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥, ·   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝐾(𝑥)

Proof of Theorem cycsubg2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 snssg 4792 . . . . . 6 (𝐴𝑋 → (𝐴𝑦 ↔ {𝐴} ⊆ 𝑦))
21bicomd 222 . . . . 5 (𝐴𝑋 → ({𝐴} ⊆ 𝑦𝐴𝑦))
32adantl 480 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ({𝐴} ⊆ 𝑦𝐴𝑦))
43rabbidv 3427 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴𝑦})
54inteqd 4961 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦} = {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴𝑦})
6 cycsubg2.x . . . . 5 𝑋 = (Base‘𝐺)
76subgacs 19157 . . . 4 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
87acsmred 17671 . . 3 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
9 snssi 4817 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
10 cycsubg2.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
1110mrcval 17625 . . 3 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) = {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦})
128, 9, 11syl2an 594 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = {𝑦 ∈ (SubGrp‘𝐺) ∣ {𝐴} ⊆ 𝑦})
13 cycsubg2.t . . 3 · = (.g𝐺)
14 cycsubg2.f . . 3 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
156, 13, 14cycsubg 19204 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ran 𝐹 = {𝑦 ∈ (SubGrp‘𝐺) ∣ 𝐴𝑦})
165, 12, 153eqtr4d 2776 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐾‘{𝐴}) = ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {crab 3419  wss 3947  {csn 4633   cint 4956  cmpt 5238  ran crn 5685  cfv 6556  (class class class)co 7426  cz 12612  Basecbs 17215  Moorecmre 17597  mrClscmrc 17598  Grpcgrp 18930  .gcmg 19063  SubGrpcsubg 19116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5306  ax-nul 5313  ax-pow 5371  ax-pr 5435  ax-un 7748  ax-cnex 11216  ax-resscn 11217  ax-1cn 11218  ax-icn 11219  ax-addcl 11220  ax-addrcl 11221  ax-mulcl 11222  ax-mulrcl 11223  ax-mulcom 11224  ax-addass 11225  ax-mulass 11226  ax-distr 11227  ax-i2m1 11228  ax-1ne0 11229  ax-1rid 11230  ax-rnegex 11231  ax-rrecex 11232  ax-cnre 11233  ax-pre-lttri 11234  ax-pre-lttrn 11235  ax-pre-ltadd 11236  ax-pre-mulgt0 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4916  df-int 4957  df-iun 5005  df-iin 5006  df-br 5156  df-opab 5218  df-mpt 5239  df-tr 5273  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5639  df-we 5641  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6314  df-ord 6381  df-on 6382  df-lim 6383  df-suc 6384  df-iota 6508  df-fun 6558  df-fn 6559  df-f 6560  df-f1 6561  df-fo 6562  df-f1o 6563  df-fv 6564  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7879  df-1st 8005  df-2nd 8006  df-frecs 8298  df-wrecs 8329  df-recs 8403  df-rdg 8442  df-1o 8498  df-2o 8499  df-er 8736  df-en 8977  df-dom 8978  df-sdom 8979  df-fin 8980  df-pnf 11302  df-mnf 11303  df-xr 11304  df-ltxr 11305  df-le 11306  df-sub 11498  df-neg 11499  df-nn 12267  df-2 12329  df-n0 12527  df-z 12613  df-uz 12877  df-fz 13541  df-seq 14024  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17216  df-ress 17245  df-plusg 17281  df-0g 17458  df-mre 17601  df-mrc 17602  df-acs 17604  df-mgm 18635  df-sgrp 18714  df-mnd 18730  df-submnd 18776  df-grp 18933  df-minusg 18934  df-mulg 19064  df-subg 19119
This theorem is referenced by:  odf1o1  19572  odf1o2  19573  cycsubgcyg2  19902  pgpfac1lem2  20077  pgpfac1lem3  20079  pgpfac1lem4  20080
  Copyright terms: Public domain W3C validator