| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdimfi | Structured version Visualization version GIF version | ||
| Description: Finite version of lvecdim 21073 which does not require the axiom of choice. The axiom of choice is used in acsmapd 18519, which is required in the infinite case. Suggested by Gérard Lang. (Contributed by Thierry Arnoux, 24-May-2023.) |
| Ref | Expression |
|---|---|
| lvecdimfi.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lvecdimfi.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lvecdimfi.s | ⊢ (𝜑 → 𝑆 ∈ 𝐽) |
| lvecdimfi.t | ⊢ (𝜑 → 𝑇 ∈ 𝐽) |
| lvecdimfi.f | ⊢ (𝜑 → 𝑆 ∈ Fin) |
| Ref | Expression |
|---|---|
| lvecdimfi | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecdimfi.w | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 3 | eqid 2730 | . . . . . 6 ⊢ (mrCls‘(LSubSp‘𝑊)) = (mrCls‘(LSubSp‘𝑊)) | |
| 4 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
| 5 | 2, 3, 4 | lssacsex 21060 | . . . . 5 ⊢ (𝑊 ∈ LVec → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
| 6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → ((LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊)) ∧ ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧})))) |
| 7 | 6 | simpld 494 | . . 3 ⊢ (𝜑 → (LSubSp‘𝑊) ∈ (ACS‘(Base‘𝑊))) |
| 8 | 7 | acsmred 17623 | . 2 ⊢ (𝜑 → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
| 9 | eqid 2730 | . 2 ⊢ (mrInd‘(LSubSp‘𝑊)) = (mrInd‘(LSubSp‘𝑊)) | |
| 10 | 6 | simprd 495 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝒫 (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)∀𝑧 ∈ (((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑦})) ∖ ((mrCls‘(LSubSp‘𝑊))‘𝑥))𝑦 ∈ ((mrCls‘(LSubSp‘𝑊))‘(𝑥 ∪ {𝑧}))) |
| 11 | lvecdimfi.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐽) | |
| 12 | lvecdimfi.j | . . . . . 6 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 13 | 2, 3, 4, 9, 12 | lbsacsbs 21072 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑆 ∈ 𝐽 ↔ (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)))) |
| 14 | 13 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽) → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))) |
| 15 | 1, 11, 14 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊))) |
| 16 | 15 | simpld 494 | . 2 ⊢ (𝜑 → 𝑆 ∈ (mrInd‘(LSubSp‘𝑊))) |
| 17 | lvecdimfi.t | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐽) | |
| 18 | 2, 3, 4, 9, 12 | lbsacsbs 21072 | . . . . 5 ⊢ (𝑊 ∈ LVec → (𝑇 ∈ 𝐽 ↔ (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)))) |
| 19 | 18 | biimpa 476 | . . . 4 ⊢ ((𝑊 ∈ LVec ∧ 𝑇 ∈ 𝐽) → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))) |
| 20 | 1, 17, 19 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑇 ∈ (mrInd‘(LSubSp‘𝑊)) ∧ ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊))) |
| 21 | 20 | simpld 494 | . 2 ⊢ (𝜑 → 𝑇 ∈ (mrInd‘(LSubSp‘𝑊))) |
| 22 | lvecdimfi.f | . 2 ⊢ (𝜑 → 𝑆 ∈ Fin) | |
| 23 | 15 | simprd 495 | . . 3 ⊢ (𝜑 → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = (Base‘𝑊)) |
| 24 | 20 | simprd 495 | . . 3 ⊢ (𝜑 → ((mrCls‘(LSubSp‘𝑊))‘𝑇) = (Base‘𝑊)) |
| 25 | 23, 24 | eqtr4d 2768 | . 2 ⊢ (𝜑 → ((mrCls‘(LSubSp‘𝑊))‘𝑆) = ((mrCls‘(LSubSp‘𝑊))‘𝑇)) |
| 26 | 8, 3, 9, 10, 16, 21, 22, 25 | mreexfidimd 17617 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∖ cdif 3919 ∪ cun 3920 𝒫 cpw 4571 {csn 4597 class class class wbr 5115 ‘cfv 6519 ≈ cen 8919 Fincfn 8922 Basecbs 17185 mrClscmrc 17550 mrIndcmri 17551 ACScacs 17552 LSubSpclss 20843 LBasisclbs 20987 LVecclvec 21015 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-0g 17410 df-mre 17553 df-mrc 17554 df-mri 17555 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-drng 20646 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lbs 20988 df-lvec 21016 |
| This theorem is referenced by: dimvalfi 33605 |
| Copyright terms: Public domain | W3C validator |