MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubg2cl Structured version   Visualization version   GIF version

Theorem cycsubg2cl 18346
Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
cycsubg2cl.x 𝑋 = (Base‘𝐺)
cycsubg2cl.t · = (.g𝐺)
cycsubg2cl.k 𝐾 = (mrCls‘(SubGrp‘𝐺))
Assertion
Ref Expression
cycsubg2cl ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))

Proof of Theorem cycsubg2cl
StepHypRef Expression
1 cycsubg2cl.x . . . . . 6 𝑋 = (Base‘𝐺)
21subgacs 18305 . . . . 5 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋))
32acsmred 16919 . . . 4 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
433ad2ant1 1128 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋))
5 simp2 1132 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝐴𝑋)
65snssd 4734 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → {𝐴} ⊆ 𝑋)
7 cycsubg2cl.k . . . 4 𝐾 = (mrCls‘(SubGrp‘𝐺))
87mrccl 16874 . . 3 (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
94, 6, 8syl2anc 586 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺))
10 simp3 1133 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
114, 7, 6mrcssidd 16888 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴}))
12 snssg 4709 . . . 4 (𝐴𝑋 → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴})))
13123ad2ant2 1129 . . 3 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴})))
1411, 13mpbird 259 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴}))
15 cycsubg2cl.t . . 3 · = (.g𝐺)
1615subgmulgcl 18284 . 2 (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))
179, 10, 14, 16syl3anc 1366 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1082   = wceq 1531  wcel 2108  wss 3934  {csn 4559  cfv 6348  (class class class)co 7148  cz 11973  Basecbs 16475  Moorecmre 16845  mrClscmrc 16846  Grpcgrp 18095  .gcmg 18216  SubGrpcsubg 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-seq 13362  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268
This theorem is referenced by:  odngen  18694
  Copyright terms: Public domain W3C validator