Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cycsubg2cl | Structured version Visualization version GIF version |
Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
Ref | Expression |
---|---|
cycsubg2cl.x | ⊢ 𝑋 = (Base‘𝐺) |
cycsubg2cl.t | ⊢ · = (.g‘𝐺) |
cycsubg2cl.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
Ref | Expression |
---|---|
cycsubg2cl | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycsubg2cl.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | subgacs 18838 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋)) |
3 | 2 | acsmred 17414 | . . . 4 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
5 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
6 | 5 | snssd 4748 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ 𝑋) |
7 | cycsubg2cl.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
8 | 7 | mrccl 17369 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
9 | 4, 6, 8 | syl2anc 585 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
10 | simp3 1138 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
11 | 4, 7, 6 | mrcssidd 17383 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴})) |
12 | snssg 4723 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) | |
13 | 12 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) |
14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴})) |
15 | cycsubg2cl.t | . . 3 ⊢ · = (.g‘𝐺) | |
16 | 15 | subgmulgcl 18817 | . 2 ⊢ (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
17 | 9, 10, 14, 16 | syl3anc 1371 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 {csn 4565 ‘cfv 6458 (class class class)co 7307 ℤcz 12369 Basecbs 16961 Moorecmre 17340 mrClscmrc 17341 Grpcgrp 18626 .gcmg 18749 SubGrpcsubg 18798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-iin 4934 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-fz 13290 df-seq 13772 df-sets 16914 df-slot 16932 df-ndx 16944 df-base 16962 df-ress 16991 df-plusg 17024 df-0g 17201 df-mre 17344 df-mrc 17345 df-acs 17347 df-mgm 18375 df-sgrp 18424 df-mnd 18435 df-submnd 18480 df-grp 18629 df-minusg 18630 df-mulg 18750 df-subg 18801 |
This theorem is referenced by: odngen 19231 |
Copyright terms: Public domain | W3C validator |