|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > cycsubg2cl | Structured version Visualization version GIF version | ||
| Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) | 
| Ref | Expression | 
|---|---|
| cycsubg2cl.x | ⊢ 𝑋 = (Base‘𝐺) | 
| cycsubg2cl.t | ⊢ · = (.g‘𝐺) | 
| cycsubg2cl.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | 
| Ref | Expression | 
|---|---|
| cycsubg2cl | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cycsubg2cl.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | 1 | subgacs 19180 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋)) | 
| 3 | 2 | acsmred 17700 | . . . 4 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) | 
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) | 
| 5 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
| 6 | 5 | snssd 4808 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ 𝑋) | 
| 7 | cycsubg2cl.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 8 | 7 | mrccl 17655 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) | 
| 9 | 4, 6, 8 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) | 
| 10 | simp3 1138 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 11 | 4, 7, 6 | mrcssidd 17669 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴})) | 
| 12 | snssg 4782 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) | |
| 13 | 12 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) | 
| 14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴})) | 
| 15 | cycsubg2cl.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 16 | 15 | subgmulgcl 19158 | . 2 ⊢ (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) | 
| 17 | 9, 10, 14, 16 | syl3anc 1372 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3950 {csn 4625 ‘cfv 6560 (class class class)co 7432 ℤcz 12615 Basecbs 17248 Moorecmre 17626 mrClscmrc 17627 Grpcgrp 18952 .gcmg 19086 SubGrpcsubg 19139 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-seq 14044 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-grp 18955 df-minusg 18956 df-mulg 19087 df-subg 19142 | 
| This theorem is referenced by: odngen 19596 | 
| Copyright terms: Public domain | W3C validator |