| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cycsubg2cl | Structured version Visualization version GIF version | ||
| Description: Any multiple of an element is contained in the generated cyclic subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| cycsubg2cl.x | ⊢ 𝑋 = (Base‘𝐺) |
| cycsubg2cl.t | ⊢ · = (.g‘𝐺) |
| cycsubg2cl.k | ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) |
| Ref | Expression |
|---|---|
| cycsubg2cl | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycsubg2cl.x | . . . . . 6 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | 1 | subgacs 19083 | . . . . 5 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘𝑋)) |
| 3 | 2 | acsmred 17572 | . . . 4 ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
| 4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (SubGrp‘𝐺) ∈ (Moore‘𝑋)) |
| 5 | simp2 1137 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ 𝑋) | |
| 6 | 5 | snssd 4762 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ 𝑋) |
| 7 | cycsubg2cl.k | . . . 4 ⊢ 𝐾 = (mrCls‘(SubGrp‘𝐺)) | |
| 8 | 7 | mrccl 17527 | . . 3 ⊢ (((SubGrp‘𝐺) ∈ (Moore‘𝑋) ∧ {𝐴} ⊆ 𝑋) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 9 | 4, 6, 8 | syl2anc 584 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐾‘{𝐴}) ∈ (SubGrp‘𝐺)) |
| 10 | simp3 1138 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ) | |
| 11 | 4, 7, 6 | mrcssidd 17541 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → {𝐴} ⊆ (𝐾‘{𝐴})) |
| 12 | snssg 4737 | . . . 4 ⊢ (𝐴 ∈ 𝑋 → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) | |
| 13 | 12 | 3ad2ant2 1134 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ (𝐾‘{𝐴}) ↔ {𝐴} ⊆ (𝐾‘{𝐴}))) |
| 14 | 11, 13 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → 𝐴 ∈ (𝐾‘{𝐴})) |
| 15 | cycsubg2cl.t | . . 3 ⊢ · = (.g‘𝐺) | |
| 16 | 15 | subgmulgcl 19062 | . 2 ⊢ (((𝐾‘{𝐴}) ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝐴 ∈ (𝐾‘{𝐴})) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
| 17 | 9, 10, 14, 16 | syl3anc 1373 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℤ) → (𝑁 · 𝐴) ∈ (𝐾‘{𝐴})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3899 {csn 4577 ‘cfv 6489 (class class class)co 7355 ℤcz 12478 Basecbs 17130 Moorecmre 17494 mrClscmrc 17495 Grpcgrp 18856 .gcmg 18990 SubGrpcsubg 19043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-n0 12392 df-z 12479 df-uz 12743 df-fz 13418 df-seq 13919 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-0g 17355 df-mre 17498 df-mrc 17499 df-acs 17501 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-mulg 18991 df-subg 19046 |
| This theorem is referenced by: odngen 19499 |
| Copyright terms: Public domain | W3C validator |