MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsexdimd Structured version   Visualization version   GIF version

Theorem acsexdimd 18522
Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17601 for the finite case and acsinfdimd 18521 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsexdimd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsexdimd.2 𝑁 = (mrCls‘𝐴)
acsexdimd.3 𝐼 = (mrInd‘𝐴)
acsexdimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
acsexdimd.5 (𝜑𝑆𝐼)
acsexdimd.6 (𝜑𝑇𝐼)
acsexdimd.7 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
acsexdimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑆,𝑠,𝑦,𝑧   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem acsexdimd
StepHypRef Expression
1 acsexdimd.1 . . . . 5 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 17607 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
32adantr 480 . . 3 ((𝜑𝑆 ∈ Fin) → 𝐴 ∈ (Moore‘𝑋))
4 acsexdimd.2 . . 3 𝑁 = (mrCls‘𝐴)
5 acsexdimd.3 . . 3 𝐼 = (mrInd‘𝐴)
6 acsexdimd.4 . . . 4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
76adantr 480 . . 3 ((𝜑𝑆 ∈ Fin) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
8 acsexdimd.5 . . . 4 (𝜑𝑆𝐼)
98adantr 480 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆𝐼)
10 acsexdimd.6 . . . 4 (𝜑𝑇𝐼)
1110adantr 480 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑇𝐼)
12 simpr 484 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ Fin)
13 acsexdimd.7 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
1413adantr 480 . . 3 ((𝜑𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
153, 4, 5, 7, 9, 11, 12, 14mreexfidimd 17601 . 2 ((𝜑𝑆 ∈ Fin) → 𝑆𝑇)
161adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝐴 ∈ (ACS‘𝑋))
178adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝐼)
1810adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑇𝐼)
1913adantr 480 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
20 simpr 484 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → ¬ 𝑆 ∈ Fin)
2116, 4, 5, 17, 18, 19, 20acsinfdimd 18521 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝑇)
2215, 21pm2.61dan 810 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2105  wral 3060  cdif 3945  cun 3946  𝒫 cpw 4602  {csn 4628   class class class wbr 5148  cfv 6543  cen 8942  Fincfn 8945  Moorecmre 17533  mrClscmrc 17534  mrIndcmri 17535  ACScacs 17536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642  ax-ac2 10464  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-oi 9511  df-r1 9765  df-rank 9766  df-card 9940  df-acn 9943  df-ac 10117  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-fz 13492  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-tset 17223  df-ple 17224  df-ocomp 17225  df-mre 17537  df-mrc 17538  df-mri 17539  df-acs 17540  df-proset 18258  df-drs 18259  df-poset 18276  df-ipo 18491
This theorem is referenced by:  lvecdim  21004
  Copyright terms: Public domain W3C validator