MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsexdimd Structured version   Visualization version   GIF version

Theorem acsexdimd 18277
Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17359 for the finite case and acsinfdimd 18276 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
acsexdimd.1 (𝜑𝐴 ∈ (ACS‘𝑋))
acsexdimd.2 𝑁 = (mrCls‘𝐴)
acsexdimd.3 𝐼 = (mrInd‘𝐴)
acsexdimd.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
acsexdimd.5 (𝜑𝑆𝐼)
acsexdimd.6 (𝜑𝑇𝐼)
acsexdimd.7 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
Assertion
Ref Expression
acsexdimd (𝜑𝑆𝑇)
Distinct variable groups:   𝑆,𝑠,𝑦,𝑧   𝑋,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝐼,𝑠,𝑦,𝑧   𝑁,𝑠,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑦,𝑧,𝑠)   𝑇(𝑦,𝑧,𝑠)

Proof of Theorem acsexdimd
StepHypRef Expression
1 acsexdimd.1 . . . . 5 (𝜑𝐴 ∈ (ACS‘𝑋))
21acsmred 17365 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
32adantr 481 . . 3 ((𝜑𝑆 ∈ Fin) → 𝐴 ∈ (Moore‘𝑋))
4 acsexdimd.2 . . 3 𝑁 = (mrCls‘𝐴)
5 acsexdimd.3 . . 3 𝐼 = (mrInd‘𝐴)
6 acsexdimd.4 . . . 4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
76adantr 481 . . 3 ((𝜑𝑆 ∈ Fin) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
8 acsexdimd.5 . . . 4 (𝜑𝑆𝐼)
98adantr 481 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆𝐼)
10 acsexdimd.6 . . . 4 (𝜑𝑇𝐼)
1110adantr 481 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑇𝐼)
12 simpr 485 . . 3 ((𝜑𝑆 ∈ Fin) → 𝑆 ∈ Fin)
13 acsexdimd.7 . . . 4 (𝜑 → (𝑁𝑆) = (𝑁𝑇))
1413adantr 481 . . 3 ((𝜑𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
153, 4, 5, 7, 9, 11, 12, 14mreexfidimd 17359 . 2 ((𝜑𝑆 ∈ Fin) → 𝑆𝑇)
161adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝐴 ∈ (ACS‘𝑋))
178adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝐼)
1810adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑇𝐼)
1913adantr 481 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → (𝑁𝑆) = (𝑁𝑇))
20 simpr 485 . . 3 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → ¬ 𝑆 ∈ Fin)
2116, 4, 5, 17, 18, 19, 20acsinfdimd 18276 . 2 ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆𝑇)
2215, 21pm2.61dan 810 1 (𝜑𝑆𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  cun 3885  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  cfv 6433  cen 8730  Fincfn 8733  Moorecmre 17291  mrClscmrc 17292  mrIndcmri 17293  ACScacs 17294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-r1 9522  df-rank 9523  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-tset 16981  df-ple 16982  df-ocomp 16983  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-proset 18013  df-drs 18014  df-poset 18031  df-ipo 18246
This theorem is referenced by:  lvecdim  20419
  Copyright terms: Public domain W3C validator