![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsexdimd | Structured version Visualization version GIF version |
Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17592 for the finite case and acsinfdimd 18512 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsexdimd.1 | β’ (π β π΄ β (ACSβπ)) |
acsexdimd.2 | β’ π = (mrClsβπ΄) |
acsexdimd.3 | β’ πΌ = (mrIndβπ΄) |
acsexdimd.4 | β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
acsexdimd.5 | β’ (π β π β πΌ) |
acsexdimd.6 | β’ (π β π β πΌ) |
acsexdimd.7 | β’ (π β (πβπ) = (πβπ)) |
Ref | Expression |
---|---|
acsexdimd | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsexdimd.1 | . . . . 5 β’ (π β π΄ β (ACSβπ)) | |
2 | 1 | acsmred 17598 | . . . 4 β’ (π β π΄ β (Mooreβπ)) |
3 | 2 | adantr 480 | . . 3 β’ ((π β§ π β Fin) β π΄ β (Mooreβπ)) |
4 | acsexdimd.2 | . . 3 β’ π = (mrClsβπ΄) | |
5 | acsexdimd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
6 | acsexdimd.4 | . . . 4 β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) | |
7 | 6 | adantr 480 | . . 3 β’ ((π β§ π β Fin) β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
8 | acsexdimd.5 | . . . 4 β’ (π β π β πΌ) | |
9 | 8 | adantr 480 | . . 3 β’ ((π β§ π β Fin) β π β πΌ) |
10 | acsexdimd.6 | . . . 4 β’ (π β π β πΌ) | |
11 | 10 | adantr 480 | . . 3 β’ ((π β§ π β Fin) β π β πΌ) |
12 | simpr 484 | . . 3 β’ ((π β§ π β Fin) β π β Fin) | |
13 | acsexdimd.7 | . . . 4 β’ (π β (πβπ) = (πβπ)) | |
14 | 13 | adantr 480 | . . 3 β’ ((π β§ π β Fin) β (πβπ) = (πβπ)) |
15 | 3, 4, 5, 7, 9, 11, 12, 14 | mreexfidimd 17592 | . 2 β’ ((π β§ π β Fin) β π β π) |
16 | 1 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β Fin) β π΄ β (ACSβπ)) |
17 | 8 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β Fin) β π β πΌ) |
18 | 10 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β Fin) β π β πΌ) |
19 | 13 | adantr 480 | . . 3 β’ ((π β§ Β¬ π β Fin) β (πβπ) = (πβπ)) |
20 | simpr 484 | . . 3 β’ ((π β§ Β¬ π β Fin) β Β¬ π β Fin) | |
21 | 16, 4, 5, 17, 18, 19, 20 | acsinfdimd 18512 | . 2 β’ ((π β§ Β¬ π β Fin) β π β π) |
22 | 15, 21 | pm2.61dan 810 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 βwral 3053 β cdif 3937 βͺ cun 3938 π« cpw 4594 {csn 4620 class class class wbr 5138 βcfv 6533 β cen 8931 Fincfn 8934 Moorecmre 17524 mrClscmrc 17525 mrIndcmri 17526 ACScacs 17527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-reg 9582 ax-inf2 9631 ax-ac2 10453 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8698 df-map 8817 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-oi 9500 df-r1 9754 df-rank 9755 df-card 9929 df-acn 9932 df-ac 10106 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17078 df-slot 17113 df-ndx 17125 df-base 17143 df-tset 17214 df-ple 17215 df-ocomp 17216 df-mre 17528 df-mrc 17529 df-mri 17530 df-acs 17531 df-proset 18249 df-drs 18250 df-poset 18267 df-ipo 18482 |
This theorem is referenced by: lvecdim 20997 |
Copyright terms: Public domain | W3C validator |