![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsexdimd | Structured version Visualization version GIF version |
Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17573 for the finite case and acsinfdimd 18490 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
acsexdimd.1 | β’ (π β π΄ β (ACSβπ)) |
acsexdimd.2 | β’ π = (mrClsβπ΄) |
acsexdimd.3 | β’ πΌ = (mrIndβπ΄) |
acsexdimd.4 | β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
acsexdimd.5 | β’ (π β π β πΌ) |
acsexdimd.6 | β’ (π β π β πΌ) |
acsexdimd.7 | β’ (π β (πβπ) = (πβπ)) |
Ref | Expression |
---|---|
acsexdimd | β’ (π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | acsexdimd.1 | . . . . 5 β’ (π β π΄ β (ACSβπ)) | |
2 | 1 | acsmred 17579 | . . . 4 β’ (π β π΄ β (Mooreβπ)) |
3 | 2 | adantr 481 | . . 3 β’ ((π β§ π β Fin) β π΄ β (Mooreβπ)) |
4 | acsexdimd.2 | . . 3 β’ π = (mrClsβπ΄) | |
5 | acsexdimd.3 | . . 3 β’ πΌ = (mrIndβπ΄) | |
6 | acsexdimd.4 | . . . 4 β’ (π β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) | |
7 | 6 | adantr 481 | . . 3 β’ ((π β§ π β Fin) β βπ β π« πβπ¦ β π βπ§ β ((πβ(π βͺ {π¦})) β (πβπ ))π¦ β (πβ(π βͺ {π§}))) |
8 | acsexdimd.5 | . . . 4 β’ (π β π β πΌ) | |
9 | 8 | adantr 481 | . . 3 β’ ((π β§ π β Fin) β π β πΌ) |
10 | acsexdimd.6 | . . . 4 β’ (π β π β πΌ) | |
11 | 10 | adantr 481 | . . 3 β’ ((π β§ π β Fin) β π β πΌ) |
12 | simpr 485 | . . 3 β’ ((π β§ π β Fin) β π β Fin) | |
13 | acsexdimd.7 | . . . 4 β’ (π β (πβπ) = (πβπ)) | |
14 | 13 | adantr 481 | . . 3 β’ ((π β§ π β Fin) β (πβπ) = (πβπ)) |
15 | 3, 4, 5, 7, 9, 11, 12, 14 | mreexfidimd 17573 | . 2 β’ ((π β§ π β Fin) β π β π) |
16 | 1 | adantr 481 | . . 3 β’ ((π β§ Β¬ π β Fin) β π΄ β (ACSβπ)) |
17 | 8 | adantr 481 | . . 3 β’ ((π β§ Β¬ π β Fin) β π β πΌ) |
18 | 10 | adantr 481 | . . 3 β’ ((π β§ Β¬ π β Fin) β π β πΌ) |
19 | 13 | adantr 481 | . . 3 β’ ((π β§ Β¬ π β Fin) β (πβπ) = (πβπ)) |
20 | simpr 485 | . . 3 β’ ((π β§ Β¬ π β Fin) β Β¬ π β Fin) | |
21 | 16, 4, 5, 17, 18, 19, 20 | acsinfdimd 18490 | . 2 β’ ((π β§ Β¬ π β Fin) β π β π) |
22 | 15, 21 | pm2.61dan 811 | 1 β’ (π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3060 β cdif 3938 βͺ cun 3939 π« cpw 4593 {csn 4619 class class class wbr 5138 βcfv 6529 β cen 8916 Fincfn 8919 Moorecmre 17505 mrClscmrc 17506 mrIndcmri 17507 ACScacs 17508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-reg 9566 ax-inf2 9615 ax-ac2 10437 ax-cnex 11145 ax-resscn 11146 ax-1cn 11147 ax-icn 11148 ax-addcl 11149 ax-addrcl 11150 ax-mulcl 11151 ax-mulrcl 11152 ax-mulcom 11153 ax-addass 11154 ax-mulass 11155 ax-distr 11156 ax-i2m1 11157 ax-1ne0 11158 ax-1rid 11159 ax-rnegex 11160 ax-rrecex 11161 ax-cnre 11162 ax-pre-lttri 11163 ax-pre-lttrn 11164 ax-pre-ltadd 11165 ax-pre-mulgt0 11166 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6286 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-isom 6538 df-riota 7346 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7836 df-1st 7954 df-2nd 7955 df-frecs 8245 df-wrecs 8276 df-recs 8350 df-rdg 8389 df-1o 8445 df-er 8683 df-map 8802 df-en 8920 df-dom 8921 df-sdom 8922 df-fin 8923 df-oi 9484 df-r1 9738 df-rank 9739 df-card 9913 df-acn 9916 df-ac 10090 df-pnf 11229 df-mnf 11230 df-xr 11231 df-ltxr 11232 df-le 11233 df-sub 11425 df-neg 11426 df-nn 12192 df-2 12254 df-3 12255 df-4 12256 df-5 12257 df-6 12258 df-7 12259 df-8 12260 df-9 12261 df-n0 12452 df-z 12538 df-dec 12657 df-uz 12802 df-fz 13464 df-struct 17059 df-slot 17094 df-ndx 17106 df-base 17124 df-tset 17195 df-ple 17196 df-ocomp 17197 df-mre 17509 df-mrc 17510 df-mri 17511 df-acs 17512 df-proset 18227 df-drs 18228 df-poset 18245 df-ipo 18460 |
This theorem is referenced by: lvecdim 20714 |
Copyright terms: Public domain | W3C validator |