| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acsexdimd | Structured version Visualization version GIF version | ||
| Description: In an algebraic closure system whose closure operator has the exchange property, if two independent sets have equal closure, they are equinumerous. See mreexfidimd 17562 for the finite case and acsinfdimd 18470 for the infinite case. This is a special case of Theorem 4.2.2 in [FaureFrolicher] p. 87. (Contributed by David Moews, 1-May-2017.) |
| Ref | Expression |
|---|---|
| acsexdimd.1 | ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) |
| acsexdimd.2 | ⊢ 𝑁 = (mrCls‘𝐴) |
| acsexdimd.3 | ⊢ 𝐼 = (mrInd‘𝐴) |
| acsexdimd.4 | ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| acsexdimd.5 | ⊢ (𝜑 → 𝑆 ∈ 𝐼) |
| acsexdimd.6 | ⊢ (𝜑 → 𝑇 ∈ 𝐼) |
| acsexdimd.7 | ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| Ref | Expression |
|---|---|
| acsexdimd | ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | acsexdimd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (ACS‘𝑋)) | |
| 2 | 1 | acsmred 17568 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → 𝐴 ∈ (Moore‘𝑋)) |
| 4 | acsexdimd.2 | . . 3 ⊢ 𝑁 = (mrCls‘𝐴) | |
| 5 | acsexdimd.3 | . . 3 ⊢ 𝐼 = (mrInd‘𝐴) | |
| 6 | acsexdimd.4 | . . . 4 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) | |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 8 | acsexdimd.5 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝐼) | |
| 9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → 𝑆 ∈ 𝐼) |
| 10 | acsexdimd.6 | . . . 4 ⊢ (𝜑 → 𝑇 ∈ 𝐼) | |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → 𝑇 ∈ 𝐼) |
| 12 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → 𝑆 ∈ Fin) | |
| 13 | acsexdimd.7 | . . . 4 ⊢ (𝜑 → (𝑁‘𝑆) = (𝑁‘𝑇)) | |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| 15 | 3, 4, 5, 7, 9, 11, 12, 14 | mreexfidimd 17562 | . 2 ⊢ ((𝜑 ∧ 𝑆 ∈ Fin) → 𝑆 ≈ 𝑇) |
| 16 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝐴 ∈ (ACS‘𝑋)) |
| 17 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ∈ 𝐼) |
| 18 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑇 ∈ 𝐼) |
| 19 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → (𝑁‘𝑆) = (𝑁‘𝑇)) |
| 20 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → ¬ 𝑆 ∈ Fin) | |
| 21 | 16, 4, 5, 17, 18, 19, 20 | acsinfdimd 18470 | . 2 ⊢ ((𝜑 ∧ ¬ 𝑆 ∈ Fin) → 𝑆 ≈ 𝑇) |
| 22 | 15, 21 | pm2.61dan 812 | 1 ⊢ (𝜑 → 𝑆 ≈ 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ∪ cun 3895 𝒫 cpw 4549 {csn 4575 class class class wbr 5093 ‘cfv 6487 ≈ cen 8872 Fincfn 8875 Moorecmre 17490 mrClscmrc 17491 mrIndcmri 17492 ACScacs 17493 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-reg 9484 ax-inf2 9537 ax-ac2 10360 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-oi 9402 df-r1 9663 df-rank 9664 df-card 9838 df-acn 9841 df-ac 10013 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-tset 17186 df-ple 17187 df-ocomp 17188 df-mre 17494 df-mrc 17495 df-mri 17496 df-acs 17497 df-proset 18206 df-drs 18207 df-poset 18225 df-ipo 18440 |
| This theorem is referenced by: lvecdim 21100 |
| Copyright terms: Public domain | W3C validator |