| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfn | ⊢ bday Fn No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27587 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofn 6738 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6307 Fn wfn 6477 –onto→wfo 6480 No csur 27549 bday cbday 27551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-suc 6313 df-fun 6484 df-fn 6485 df-f 6486 df-fo 6488 df-1o 8388 df-no 27552 df-bday 27554 |
| This theorem is referenced by: nobdaymin 27687 eqscut2 27717 scutun12 27721 scutbdaybnd 27726 scutbdaybnd2 27727 scutbdaylt 27729 bday1s 27745 cuteq0 27746 madebdaylemlrcut 27813 cofcut1 27833 cofcutr 27837 lrrecfr 27855 onsiso 28174 bdayon 28178 n0sbday 28249 bdayn0p1 28263 zs12bday 28361 |
| Copyright terms: Public domain | W3C validator |