| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfn | ⊢ bday Fn No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27641 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofn 6792 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6352 Fn wfn 6526 –onto→wfo 6529 No csur 27603 bday cbday 27605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-suc 6358 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-1o 8480 df-no 27606 df-bday 27608 |
| This theorem is referenced by: nocvxmin 27742 eqscut2 27770 scutun12 27774 scutbdaybnd 27779 scutbdaybnd2 27780 scutbdaylt 27782 bday1s 27795 cuteq0 27796 madebdaylemlrcut 27862 cofcut1 27880 cofcutr 27884 lrrecfr 27902 onsiso 28221 bdayon 28225 n0sbday 28296 bdayn0p1 28310 zs12bday 28395 |
| Copyright terms: Public domain | W3C validator |