MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfn Structured version   Visualization version   GIF version

Theorem bdayfn 27683
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
bdayfn bday Fn No

Proof of Theorem bdayfn
StepHypRef Expression
1 bdayfo 27587 . 2 bday : No onto→On
2 fofn 6738 . 2 ( bday : No onto→On → bday Fn No )
31, 2ax-mp 5 1 bday Fn No
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6307   Fn wfn 6477  ontowfo 6480   No csur 27549   bday cbday 27551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-suc 6313  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-1o 8388  df-no 27552  df-bday 27554
This theorem is referenced by:  nobdaymin  27687  eqscut2  27717  scutun12  27721  scutbdaybnd  27726  scutbdaybnd2  27727  scutbdaylt  27729  bday1s  27745  cuteq0  27746  madebdaylemlrcut  27813  cofcut1  27833  cofcutr  27837  lrrecfr  27855  onsiso  28174  bdayon  28178  n0sbday  28249  bdayn0p1  28263  zs12bday  28361
  Copyright terms: Public domain W3C validator