| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfn | ⊢ bday Fn No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27596 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofn 6777 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6335 Fn wfn 6509 –onto→wfo 6512 No csur 27558 bday cbday 27560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-suc 6341 df-fun 6516 df-fn 6517 df-f 6518 df-fo 6520 df-1o 8437 df-no 27561 df-bday 27563 |
| This theorem is referenced by: nocvxmin 27697 eqscut2 27725 scutun12 27729 scutbdaybnd 27734 scutbdaybnd2 27735 scutbdaylt 27737 bday1s 27750 cuteq0 27751 madebdaylemlrcut 27817 cofcut1 27835 cofcutr 27839 lrrecfr 27857 onsiso 28176 bdayon 28180 n0sbday 28251 bdayn0p1 28265 zs12bday 28350 |
| Copyright terms: Public domain | W3C validator |