![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version |
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
Ref | Expression |
---|---|
bdayfn | ⊢ bday Fn No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 27740 | . 2 ⊢ bday : No –onto→On | |
2 | fofn 6836 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 6395 Fn wfn 6568 –onto→wfo 6571 No csur 27702 bday cbday 27704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-fo 6579 df-1o 8522 df-no 27705 df-bday 27707 |
This theorem is referenced by: nocvxmin 27841 eqscut2 27869 scutun12 27873 scutbdaybnd 27878 scutbdaybnd2 27879 scutbdaylt 27881 bday1s 27894 cuteq0 27895 madebdaylemlrcut 27955 cofcut1 27972 cofcutr 27976 lrrecfr 27994 n0sbday 28372 pw2bday 28436 zs12bday 28442 |
Copyright terms: Public domain | W3C validator |