MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfn Structured version   Visualization version   GIF version

Theorem bdayfn 27661
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
bdayfn bday Fn No

Proof of Theorem bdayfn
StepHypRef Expression
1 bdayfo 27565 . 2 bday : No onto→On
2 fofn 6756 . 2 ( bday : No onto→On → bday Fn No )
31, 2ax-mp 5 1 bday Fn No
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6320   Fn wfn 6494  ontowfo 6497   No csur 27527   bday cbday 27529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-suc 6326  df-fun 6501  df-fn 6502  df-f 6503  df-fo 6505  df-1o 8411  df-no 27530  df-bday 27532
This theorem is referenced by:  nocvxmin  27666  eqscut2  27694  scutun12  27698  scutbdaybnd  27703  scutbdaybnd2  27704  scutbdaylt  27706  bday1s  27719  cuteq0  27720  madebdaylemlrcut  27786  cofcut1  27804  cofcutr  27808  lrrecfr  27826  onsiso  28145  bdayon  28149  n0sbday  28220  bdayn0p1  28234  zs12bday  28319
  Copyright terms: Public domain W3C validator