MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfn Structured version   Visualization version   GIF version

Theorem bdayfn 27685
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
bdayfn bday Fn No

Proof of Theorem bdayfn
StepHypRef Expression
1 bdayfo 27589 . 2 bday : No onto→On
2 fofn 6774 . 2 ( bday : No onto→On → bday Fn No )
31, 2ax-mp 5 1 bday Fn No
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6332   Fn wfn 6506  ontowfo 6509   No csur 27551   bday cbday 27553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-suc 6338  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-1o 8434  df-no 27554  df-bday 27556
This theorem is referenced by:  nocvxmin  27690  eqscut2  27718  scutun12  27722  scutbdaybnd  27727  scutbdaybnd2  27728  scutbdaylt  27730  bday1s  27743  cuteq0  27744  madebdaylemlrcut  27810  cofcut1  27828  cofcutr  27832  lrrecfr  27850  onsiso  28169  bdayon  28173  n0sbday  28244  bdayn0p1  28258  zs12bday  28343
  Copyright terms: Public domain W3C validator