| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfn | ⊢ bday Fn No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27589 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofn 6774 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6332 Fn wfn 6506 –onto→wfo 6509 No csur 27551 bday cbday 27553 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-fo 6517 df-1o 8434 df-no 27554 df-bday 27556 |
| This theorem is referenced by: nocvxmin 27690 eqscut2 27718 scutun12 27722 scutbdaybnd 27727 scutbdaybnd2 27728 scutbdaylt 27730 bday1s 27743 cuteq0 27744 madebdaylemlrcut 27810 cofcut1 27828 cofcutr 27832 lrrecfr 27850 onsiso 28169 bdayon 28173 n0sbday 28244 bdayn0p1 28258 zs12bday 28343 |
| Copyright terms: Public domain | W3C validator |