| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version | ||
| Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
| Ref | Expression |
|---|---|
| bdayfn | ⊢ bday Fn No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdayfo 27565 | . 2 ⊢ bday : No –onto→On | |
| 2 | fofn 6756 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
| Colors of variables: wff setvar class |
| Syntax hints: Oncon0 6320 Fn wfn 6494 –onto→wfo 6497 No csur 27527 bday cbday 27529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-suc 6326 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-1o 8411 df-no 27530 df-bday 27532 |
| This theorem is referenced by: nocvxmin 27666 eqscut2 27694 scutun12 27698 scutbdaybnd 27703 scutbdaybnd2 27704 scutbdaylt 27706 bday1s 27719 cuteq0 27720 madebdaylemlrcut 27786 cofcut1 27804 cofcutr 27808 lrrecfr 27826 onsiso 28145 bdayon 28149 n0sbday 28220 bdayn0p1 28234 zs12bday 28319 |
| Copyright terms: Public domain | W3C validator |