MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bdayfn Structured version   Visualization version   GIF version

Theorem bdayfn 27020
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.)
Assertion
Ref Expression
bdayfn bday Fn No

Proof of Theorem bdayfn
StepHypRef Expression
1 bdayfo 26932 . 2 bday : No onto→On
2 fofn 6742 . 2 ( bday : No onto→On → bday Fn No )
31, 2ax-mp 5 1 bday Fn No
Colors of variables: wff setvar class
Syntax hints:  Oncon0 6303   Fn wfn 6475  ontowfo 6478   No csur 26895   bday cbday 26897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-1o 8368  df-no 26898  df-bday 26900
This theorem is referenced by:  nocvxmin  27025  eqscut2  27052  scutun12  27056  scutbdaybnd  27061  scutbdaybnd2  27062  scutbdaylt  27064  bday1s  27077  madebdaylemlrcut  34189  cofcut1  34200  cofcutr  34202  lrrecfr  34210
  Copyright terms: Public domain W3C validator