Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bdayfn | Structured version Visualization version GIF version |
Description: The birthday function is a function over No . (Contributed by Scott Fenton, 30-Jun-2011.) |
Ref | Expression |
---|---|
bdayfn | ⊢ bday Fn No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdayfo 26932 | . 2 ⊢ bday : No –onto→On | |
2 | fofn 6742 | . 2 ⊢ ( bday : No –onto→On → bday Fn No ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ bday Fn No |
Colors of variables: wff setvar class |
Syntax hints: Oncon0 6303 Fn wfn 6475 –onto→wfo 6478 No csur 26895 bday cbday 26897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-1o 8368 df-no 26898 df-bday 26900 |
This theorem is referenced by: nocvxmin 27025 eqscut2 27052 scutun12 27056 scutbdaybnd 27061 scutbdaybnd2 27062 scutbdaylt 27064 bday1s 27077 madebdaylemlrcut 34189 cofcut1 34200 cofcutr 34202 lrrecfr 34210 |
Copyright terms: Public domain | W3C validator |