| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltlend | Structured version Visualization version GIF version | ||
| Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| sltlen.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltlen.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| sltlend | ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltlen.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) |
| 3 | sltlen.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 <s 𝐵) | |
| 6 | 2, 4, 5 | sltled 27679 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ≤s 𝐵) |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐴 ≤s 𝐵)) |
| 8 | sltne 27680 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | |
| 9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐵 ≠ 𝐴)) |
| 11 | 7, 10 | jcad 512 | . 2 ⊢ (𝜑 → (𝐴 <s 𝐵 → (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| 12 | sleloe 27664 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | |
| 13 | 1, 3, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
| 14 | eqneqall 2936 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) | |
| 15 | 14 | eqcoms 2737 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
| 16 | 15 | jao1i 858 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
| 17 | 13, 16 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝐴 ≤s 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵))) |
| 18 | 17 | impd 410 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 <s 𝐵)) |
| 19 | 11, 18 | impbid 212 | 1 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 No csur 27549 <s cslt 27550 ≤s csle 27654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6310 df-on 6311 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-1o 8388 df-2o 8389 df-no 27552 df-slt 27553 df-sle 27655 |
| This theorem is referenced by: nnsgt0 28236 n0subs2 28259 |
| Copyright terms: Public domain | W3C validator |