| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltlend | Structured version Visualization version GIF version | ||
| Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| sltlen.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltlen.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| sltlend | ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltlen.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) |
| 3 | sltlen.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) |
| 5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 <s 𝐵) | |
| 6 | 2, 4, 5 | sltled 27738 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ≤s 𝐵) |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐴 ≤s 𝐵)) |
| 8 | sltne 27739 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | |
| 9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) |
| 10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐵 ≠ 𝐴)) |
| 11 | 7, 10 | jcad 512 | . 2 ⊢ (𝜑 → (𝐴 <s 𝐵 → (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| 12 | sleloe 27723 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | |
| 13 | 1, 3, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
| 14 | eqneqall 2944 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) | |
| 15 | 14 | eqcoms 2744 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
| 16 | 15 | jao1i 858 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
| 17 | 13, 16 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝐴 ≤s 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵))) |
| 18 | 17 | impd 410 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 <s 𝐵)) |
| 19 | 11, 18 | impbid 212 | 1 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 class class class wbr 5124 No csur 27608 <s cslt 27609 ≤s csle 27713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-sle 27714 |
| This theorem is referenced by: nnsgt0 28288 n0subs2 28311 |
| Copyright terms: Public domain | W3C validator |