![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltlend | Structured version Visualization version GIF version |
Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
sltlen.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
sltlen.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
Ref | Expression |
---|---|
sltlend | ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltlen.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
2 | 1 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ∈ No ) |
3 | sltlen.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ No ) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ∈ No ) |
5 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 <s 𝐵) | |
6 | 2, 4, 5 | sltled 27829 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐴 ≤s 𝐵) |
7 | 6 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐴 ≤s 𝐵)) |
8 | sltne 27830 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) | |
9 | 1, 8 | sylan 580 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 <s 𝐵) → 𝐵 ≠ 𝐴) |
10 | 9 | ex 412 | . . 3 ⊢ (𝜑 → (𝐴 <s 𝐵 → 𝐵 ≠ 𝐴)) |
11 | 7, 10 | jcad 512 | . 2 ⊢ (𝜑 → (𝐴 <s 𝐵 → (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
12 | sleloe 27814 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) | |
13 | 1, 3, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐴 ≤s 𝐵 ↔ (𝐴 <s 𝐵 ∨ 𝐴 = 𝐵))) |
14 | eqneqall 2949 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) | |
15 | 14 | eqcoms 2743 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
16 | 15 | jao1i 858 | . . . 4 ⊢ ((𝐴 <s 𝐵 ∨ 𝐴 = 𝐵) → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵)) |
17 | 13, 16 | biimtrdi 253 | . . 3 ⊢ (𝜑 → (𝐴 ≤s 𝐵 → (𝐵 ≠ 𝐴 → 𝐴 <s 𝐵))) |
18 | 17 | impd 410 | . 2 ⊢ (𝜑 → ((𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴) → 𝐴 <s 𝐵)) |
19 | 11, 18 | impbid 212 | 1 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ≤s 𝐵 ∧ 𝐵 ≠ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 class class class wbr 5148 No csur 27699 <s cslt 27700 ≤s csle 27804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-sle 27805 |
This theorem is referenced by: nnsgt0 28357 |
Copyright terms: Public domain | W3C validator |