![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sltlend | Structured version Visualization version GIF version |
Description: Surreal less-than in terms of less-than or equal. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
sltlen.1 | âĒ (ð â ðī â No ) |
sltlen.2 | âĒ (ð â ðĩ â No ) |
Ref | Expression |
---|---|
sltlend | âĒ (ð â (ðī <s ðĩ â (ðī âĪs ðĩ â§ ðĩ â ðī))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sltlen.1 | . . . . . 6 âĒ (ð â ðī â No ) | |
2 | 1 | adantr 480 | . . . . 5 âĒ ((ð â§ ðī <s ðĩ) â ðī â No ) |
3 | sltlen.2 | . . . . . 6 âĒ (ð â ðĩ â No ) | |
4 | 3 | adantr 480 | . . . . 5 âĒ ((ð â§ ðī <s ðĩ) â ðĩ â No ) |
5 | simpr 484 | . . . . 5 âĒ ((ð â§ ðī <s ðĩ) â ðī <s ðĩ) | |
6 | 2, 4, 5 | sltled 27621 | . . . 4 âĒ ((ð â§ ðī <s ðĩ) â ðī âĪs ðĩ) |
7 | 6 | ex 412 | . . 3 âĒ (ð â (ðī <s ðĩ â ðī âĪs ðĩ)) |
8 | sltne 27622 | . . . . 5 âĒ ((ðī â No â§ ðī <s ðĩ) â ðĩ â ðī) | |
9 | 1, 8 | sylan 579 | . . . 4 âĒ ((ð â§ ðī <s ðĩ) â ðĩ â ðī) |
10 | 9 | ex 412 | . . 3 âĒ (ð â (ðī <s ðĩ â ðĩ â ðī)) |
11 | 7, 10 | jcad 512 | . 2 âĒ (ð â (ðī <s ðĩ â (ðī âĪs ðĩ â§ ðĩ â ðī))) |
12 | sleloe 27606 | . . . . 5 âĒ ((ðī â No â§ ðĩ â No ) â (ðī âĪs ðĩ â (ðī <s ðĩ âĻ ðī = ðĩ))) | |
13 | 1, 3, 12 | syl2anc 583 | . . . 4 âĒ (ð â (ðī âĪs ðĩ â (ðī <s ðĩ âĻ ðī = ðĩ))) |
14 | eqneqall 2943 | . . . . . 6 âĒ (ðĩ = ðī â (ðĩ â ðī â ðī <s ðĩ)) | |
15 | 14 | eqcoms 2732 | . . . . 5 âĒ (ðī = ðĩ â (ðĩ â ðī â ðī <s ðĩ)) |
16 | 15 | jao1i 855 | . . . 4 âĒ ((ðī <s ðĩ âĻ ðī = ðĩ) â (ðĩ â ðī â ðī <s ðĩ)) |
17 | 13, 16 | syl6bi 253 | . . 3 âĒ (ð â (ðī âĪs ðĩ â (ðĩ â ðī â ðī <s ðĩ))) |
18 | 17 | impd 410 | . 2 âĒ (ð â ((ðī âĪs ðĩ â§ ðĩ â ðī) â ðī <s ðĩ)) |
19 | 11, 18 | impbid 211 | 1 âĒ (ð â (ðī <s ðĩ â (ðī âĪs ðĩ â§ ðĩ â ðī))) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â wb 205 â§ wa 395 âĻ wo 844 = wceq 1533 â wcel 2098 â wne 2932 class class class wbr 5139 No csur 27492 <s cslt 27493 âĪs csle 27596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-fv 6542 df-1o 8462 df-2o 8463 df-no 27495 df-slt 27496 df-sle 27597 |
This theorem is referenced by: nnsgt0 28126 |
Copyright terms: Public domain | W3C validator |