MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcici Structured version   Visualization version   GIF version

Theorem brcici 17717
Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
cic.f (𝜑𝐹 ∈ (𝑋𝐼𝑌))
Assertion
Ref Expression
brcici (𝜑𝑋( ≃𝑐𝐶)𝑌)

Proof of Theorem brcici
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cic.f . . 3 (𝜑𝐹 ∈ (𝑋𝐼𝑌))
2 eleq1 2821 . . . 4 (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋𝐼𝑌)))
32spcegv 3549 . . 3 (𝐹 ∈ (𝑋𝐼𝑌) → (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
41, 1, 3sylc 65 . 2 (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))
5 cic.i . . 3 𝐼 = (Iso‘𝐶)
6 cic.b . . 3 𝐵 = (Base‘𝐶)
7 cic.c . . 3 (𝜑𝐶 ∈ Cat)
8 cic.x . . 3 (𝜑𝑋𝐵)
9 cic.y . . 3 (𝜑𝑌𝐵)
105, 6, 7, 8, 9cic 17716 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
114, 10mpbird 257 1 (𝜑𝑋( ≃𝑐𝐶)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2113   class class class wbr 5095  cfv 6489  (class class class)co 7355  Basecbs 17130  Catccat 17580  Isociso 17663  𝑐 ccic 17712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-supp 8100  df-inv 17665  df-iso 17666  df-cic 17713
This theorem is referenced by:  cicref  17718  cicsym  17721  cictr  17722  upciclem4  49284  swapciso  49401  fucoppccic  49528  diagcic  49655
  Copyright terms: Public domain W3C validator