| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcici | Structured version Visualization version GIF version | ||
| Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
| cic.b | ⊢ 𝐵 = (Base‘𝐶) |
| cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cic.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| brcici | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 2 | eleq1 2817 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋𝐼𝑌))) | |
| 3 | 2 | spcegv 3566 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 4 | 1, 1, 3 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) |
| 5 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 6 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | cic 17768 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Catccat 17632 Isociso 17715 ≃𝑐 ccic 17764 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-supp 8143 df-inv 17717 df-iso 17718 df-cic 17765 |
| This theorem is referenced by: cicref 17770 cicsym 17773 cictr 17774 upciclem4 49162 swapciso 49279 fucoppccic 49406 diagcic 49533 |
| Copyright terms: Public domain | W3C validator |