![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcici | Structured version Visualization version GIF version |
Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
cic.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
Ref | Expression |
---|---|
brcici | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
2 | eleq1 2832 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋𝐼𝑌))) | |
3 | 2 | spcegv 3610 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
4 | 1, 1, 3 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) |
5 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
6 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
7 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
8 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
9 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
10 | 5, 6, 7, 8, 9 | cic 17860 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Catccat 17722 Isociso 17807 ≃𝑐 ccic 17856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-supp 8202 df-inv 17809 df-iso 17810 df-cic 17857 |
This theorem is referenced by: cicref 17862 cicsym 17865 cictr 17866 |
Copyright terms: Public domain | W3C validator |