| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcici | Structured version Visualization version GIF version | ||
| Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
| cic.b | ⊢ 𝐵 = (Base‘𝐶) |
| cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cic.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| brcici | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 2 | eleq1 2821 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋𝐼𝑌))) | |
| 3 | 2 | spcegv 3549 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 4 | 1, 1, 3 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) |
| 5 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 6 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | cic 17716 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 Catccat 17580 Isociso 17663 ≃𝑐 ccic 17712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-supp 8100 df-inv 17665 df-iso 17666 df-cic 17713 |
| This theorem is referenced by: cicref 17718 cicsym 17721 cictr 17722 upciclem4 49284 swapciso 49401 fucoppccic 49528 diagcic 49655 |
| Copyright terms: Public domain | W3C validator |