![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcici | Structured version Visualization version GIF version |
Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | β’ πΌ = (IsoβπΆ) |
cic.b | β’ π΅ = (BaseβπΆ) |
cic.c | β’ (π β πΆ β Cat) |
cic.x | β’ (π β π β π΅) |
cic.y | β’ (π β π β π΅) |
cic.f | β’ (π β πΉ β (ππΌπ)) |
Ref | Expression |
---|---|
brcici | β’ (π β π( βπ βπΆ)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.f | . . 3 β’ (π β πΉ β (ππΌπ)) | |
2 | eleq1 2822 | . . . 4 β’ (π = πΉ β (π β (ππΌπ) β πΉ β (ππΌπ))) | |
3 | 2 | spcegv 3588 | . . 3 β’ (πΉ β (ππΌπ) β (πΉ β (ππΌπ) β βπ π β (ππΌπ))) |
4 | 1, 1, 3 | sylc 65 | . 2 β’ (π β βπ π β (ππΌπ)) |
5 | cic.i | . . 3 β’ πΌ = (IsoβπΆ) | |
6 | cic.b | . . 3 β’ π΅ = (BaseβπΆ) | |
7 | cic.c | . . 3 β’ (π β πΆ β Cat) | |
8 | cic.x | . . 3 β’ (π β π β π΅) | |
9 | cic.y | . . 3 β’ (π β π β π΅) | |
10 | 5, 6, 7, 8, 9 | cic 17746 | . 2 β’ (π β (π( βπ βπΆ)π β βπ π β (ππΌπ))) |
11 | 4, 10 | mpbird 257 | 1 β’ (π β π( βπ βπΆ)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 βwex 1782 β wcel 2107 class class class wbr 5149 βcfv 6544 (class class class)co 7409 Basecbs 17144 Catccat 17608 Isociso 17693 βπ ccic 17742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-supp 8147 df-inv 17695 df-iso 17696 df-cic 17743 |
This theorem is referenced by: cicref 17748 cicsym 17751 cictr 17752 |
Copyright terms: Public domain | W3C validator |