| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcici | Structured version Visualization version GIF version | ||
| Description: Prove that two objects are isomorphic by an explicit isomorphism. (Contributed by AV, 4-Apr-2020.) |
| Ref | Expression |
|---|---|
| cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
| cic.b | ⊢ 𝐵 = (Base‘𝐶) |
| cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| cic.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) |
| Ref | Expression |
|---|---|
| brcici | ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cic.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐼𝑌)) | |
| 2 | eleq1 2817 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑓 ∈ (𝑋𝐼𝑌) ↔ 𝐹 ∈ (𝑋𝐼𝑌))) | |
| 3 | 2 | spcegv 3550 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐼𝑌) → (𝐹 ∈ (𝑋𝐼𝑌) → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 4 | 1, 1, 3 | sylc 65 | . 2 ⊢ (𝜑 → ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) |
| 5 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
| 6 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 7 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 8 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 9 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 10 | 5, 6, 7, 8, 9 | cic 17698 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
| 11 | 4, 10 | mpbird 257 | 1 ⊢ (𝜑 → 𝑋( ≃𝑐 ‘𝐶)𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2110 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 Catccat 17562 Isociso 17645 ≃𝑐 ccic 17694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-supp 8086 df-inv 17647 df-iso 17648 df-cic 17695 |
| This theorem is referenced by: cicref 17700 cicsym 17703 cictr 17704 upciclem4 49180 swapciso 49297 fucoppccic 49424 diagcic 49551 |
| Copyright terms: Public domain | W3C validator |