![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cic | Structured version Visualization version GIF version |
Description: Objects 𝑋 and 𝑌 in a category are isomorphic provided that there is an isomorphism 𝑓:𝑋⟶𝑌, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
cic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
2 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | brcic 17846 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
7 | n0 4359 | . 2 ⊢ ((𝑋𝐼𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) | |
8 | 6, 7 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ≠ wne 2938 ∅c0 4339 class class class wbr 5148 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 Catccat 17709 Isociso 17794 ≃𝑐 ccic 17843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-supp 8185 df-inv 17796 df-iso 17797 df-cic 17844 |
This theorem is referenced by: brcici 17848 cicsym 17852 cictr 17853 initoeu1w 18066 initoeu2 18070 termoeu1w 18073 nzerooringczr 21509 thincciso 48849 thinccic 48862 |
Copyright terms: Public domain | W3C validator |