MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cic Structured version   Visualization version   GIF version

Theorem cic 17428
Description: Objects 𝑋 and 𝑌 in a category are isomorphic provided that there is an isomorphism 𝑓:𝑋𝑌, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.)
Hypotheses
Ref Expression
cic.i 𝐼 = (Iso‘𝐶)
cic.b 𝐵 = (Base‘𝐶)
cic.c (𝜑𝐶 ∈ Cat)
cic.x (𝜑𝑋𝐵)
cic.y (𝜑𝑌𝐵)
Assertion
Ref Expression
cic (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐶(𝑓)

Proof of Theorem cic
StepHypRef Expression
1 cic.i . . 3 𝐼 = (Iso‘𝐶)
2 cic.b . . 3 𝐵 = (Base‘𝐶)
3 cic.c . . 3 (𝜑𝐶 ∈ Cat)
4 cic.x . . 3 (𝜑𝑋𝐵)
5 cic.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5brcic 17427 . 2 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅))
7 n0 4277 . 2 ((𝑋𝐼𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))
86, 7bitrdi 286 1 (𝜑 → (𝑋( ≃𝑐𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1783  wcel 2108  wne 2942  c0 4253   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  Catccat 17290  Isociso 17375  𝑐 ccic 17424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-supp 7949  df-inv 17377  df-iso 17378  df-cic 17425
This theorem is referenced by:  brcici  17429  cicsym  17433  cictr  17434  initoeu1w  17643  initoeu2  17647  termoeu1w  17650  nzerooringczr  45518  thincciso  46218  thinccic  46230
  Copyright terms: Public domain W3C validator