![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cic | Structured version Visualization version GIF version |
Description: Objects 𝑋 and 𝑌 in a category are isomorphic provided that there is an isomorphism 𝑓:𝑋⟶𝑌, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | ⊢ 𝐼 = (Iso‘𝐶) |
cic.b | ⊢ 𝐵 = (Base‘𝐶) |
cic.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
cic.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
cic.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
cic | ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.i | . . 3 ⊢ 𝐼 = (Iso‘𝐶) | |
2 | cic.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
3 | cic.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | cic.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | cic.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | brcic 16665 | . 2 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ (𝑋𝐼𝑌) ≠ ∅)) |
7 | n0 4078 | . 2 ⊢ ((𝑋𝐼𝑌) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌)) | |
8 | 6, 7 | syl6bb 276 | 1 ⊢ (𝜑 → (𝑋( ≃𝑐 ‘𝐶)𝑌 ↔ ∃𝑓 𝑓 ∈ (𝑋𝐼𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ≠ wne 2943 ∅c0 4063 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 Catccat 16532 Isociso 16613 ≃𝑐 ccic 16662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1st 7315 df-2nd 7316 df-supp 7447 df-inv 16615 df-iso 16616 df-cic 16663 |
This theorem is referenced by: brcici 16667 cicsym 16671 cictr 16672 initoeu1w 16869 initoeu2 16873 termoeu1w 16876 nzerooringczr 42600 |
Copyright terms: Public domain | W3C validator |