![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cic | Structured version Visualization version GIF version |
Description: Objects π and π in a category are isomorphic provided that there is an isomorphism π:πβΆπ, see definition 3.15 of [Adamek] p. 29. (Contributed by AV, 4-Apr-2020.) |
Ref | Expression |
---|---|
cic.i | β’ πΌ = (IsoβπΆ) |
cic.b | β’ π΅ = (BaseβπΆ) |
cic.c | β’ (π β πΆ β Cat) |
cic.x | β’ (π β π β π΅) |
cic.y | β’ (π β π β π΅) |
Ref | Expression |
---|---|
cic | β’ (π β (π( βπ βπΆ)π β βπ π β (ππΌπ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.i | . . 3 β’ πΌ = (IsoβπΆ) | |
2 | cic.b | . . 3 β’ π΅ = (BaseβπΆ) | |
3 | cic.c | . . 3 β’ (π β πΆ β Cat) | |
4 | cic.x | . . 3 β’ (π β π β π΅) | |
5 | cic.y | . . 3 β’ (π β π β π΅) | |
6 | 1, 2, 3, 4, 5 | brcic 17750 | . 2 β’ (π β (π( βπ βπΆ)π β (ππΌπ) β β )) |
7 | n0 4346 | . 2 β’ ((ππΌπ) β β β βπ π β (ππΌπ)) | |
8 | 6, 7 | bitrdi 287 | 1 β’ (π β (π( βπ βπΆ)π β βπ π β (ππΌπ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1540 βwex 1780 β wcel 2105 β wne 2939 β c0 4322 class class class wbr 5148 βcfv 6543 (class class class)co 7412 Basecbs 17149 Catccat 17613 Isociso 17698 βπ ccic 17747 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-supp 8151 df-inv 17700 df-iso 17701 df-cic 17748 |
This theorem is referenced by: brcici 17752 cicsym 17756 cictr 17757 initoeu1w 17967 initoeu2 17971 termoeu1w 17974 nzerooringczr 47059 thincciso 47757 thinccic 47769 |
Copyright terms: Public domain | W3C validator |