MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cictr Structured version   Visualization version   GIF version

Theorem cictr 17071
Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cictr ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)

Proof of Theorem cictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ciclcl 17068 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
2 cicrcl 17069 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
31, 2jca 515 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)))
43ex 416 . . . 4 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆 → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶))))
5 cicrcl 17069 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆( ≃𝑐𝐶)𝑇) → 𝑇 ∈ (Base‘𝐶))
65ex 416 . . . 4 (𝐶 ∈ Cat → (𝑆( ≃𝑐𝐶)𝑇𝑇 ∈ (Base‘𝐶)))
74, 6anim12d 611 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))))
873impib 1113 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))
9 eqid 2801 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
10 eqid 2801 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 486 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 simpll 766 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
1312adantl 485 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
14 simplr 768 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
1514adantl 485 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
169, 10, 11, 13, 15cic 17065 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
17 simprr 772 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑇 ∈ (Base‘𝐶))
189, 10, 11, 15, 17cic 17065 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑆( ≃𝑐𝐶)𝑇 ↔ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)))
1916, 18anbi12d 633 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) ↔ (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))))
2011adantl 485 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝐶 ∈ Cat)
2113adantl 485 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅 ∈ (Base‘𝐶))
2217adantl 485 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑇 ∈ (Base‘𝐶))
23 eqid 2801 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
2415adantl 485 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑆 ∈ (Base‘𝐶))
25 simplr 768 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))
26 simpll 766 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))
2710, 23, 9, 20, 21, 24, 22, 25, 26isoco 17043 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → (𝑔(⟨𝑅, 𝑆⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑅(Iso‘𝐶)𝑇))
289, 10, 20, 21, 22, 27brcici 17066 . . . . . . . . . . . . 13 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅( ≃𝑐𝐶)𝑇)
2928ex 416 . . . . . . . . . . . 12 ((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3029ex 416 . . . . . . . . . . 11 (𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3130exlimiv 1931 . . . . . . . . . 10 (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3231com12 32 . . . . . . . . 9 (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3332exlimiv 1931 . . . . . . . 8 (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3433imp 410 . . . . . . 7 ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3534com12 32 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → 𝑅( ≃𝑐𝐶)𝑇))
3619, 35sylbid 243 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇))
3736ex 416 . . . 4 (𝐶 ∈ Cat → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)))
3837com23 86 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇)))
39383impib 1113 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇))
408, 39mpd 15 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wex 1781  wcel 2112  cop 4534   class class class wbr 5033  cfv 6328  (class class class)co 7139  Basecbs 16479  compcco 16573  Catccat 16931  Isociso 17012  𝑐 ccic 17061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-1st 7675  df-2nd 7676  df-supp 7818  df-cat 16935  df-cid 16936  df-sect 17013  df-inv 17014  df-iso 17015  df-cic 17062
This theorem is referenced by:  cicer  17072  nzerooringczr  44693
  Copyright terms: Public domain W3C validator