MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cictr Structured version   Visualization version   GIF version

Theorem cictr 17853
Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cictr ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)

Proof of Theorem cictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ciclcl 17850 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
2 cicrcl 17851 . . . . . 6 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
31, 2jca 511 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)))
43ex 412 . . . 4 (𝐶 ∈ Cat → (𝑅( ≃𝑐𝐶)𝑆 → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶))))
5 cicrcl 17851 . . . . 5 ((𝐶 ∈ Cat ∧ 𝑆( ≃𝑐𝐶)𝑇) → 𝑇 ∈ (Base‘𝐶))
65ex 412 . . . 4 (𝐶 ∈ Cat → (𝑆( ≃𝑐𝐶)𝑇𝑇 ∈ (Base‘𝐶)))
74, 6anim12d 609 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))))
873impib 1115 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))
9 eqid 2735 . . . . . . . 8 (Iso‘𝐶) = (Iso‘𝐶)
10 eqid 2735 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
11 simpl 482 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
12 simpll 767 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
1312adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
14 simplr 769 . . . . . . . . 9 (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
1514adantl 481 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
169, 10, 11, 13, 15cic 17847 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
17 simprr 773 . . . . . . . 8 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑇 ∈ (Base‘𝐶))
189, 10, 11, 15, 17cic 17847 . . . . . . 7 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑆( ≃𝑐𝐶)𝑇 ↔ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)))
1916, 18anbi12d 632 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) ↔ (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))))
2011adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝐶 ∈ Cat)
2113adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅 ∈ (Base‘𝐶))
2217adantl 481 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑇 ∈ (Base‘𝐶))
23 eqid 2735 . . . . . . . . . . . . . . 15 (comp‘𝐶) = (comp‘𝐶)
2415adantl 481 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑆 ∈ (Base‘𝐶))
25 simplr 769 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))
26 simpll 767 . . . . . . . . . . . . . . 15 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))
2710, 23, 9, 20, 21, 24, 22, 25, 26isoco 17825 . . . . . . . . . . . . . 14 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → (𝑔(⟨𝑅, 𝑆⟩(comp‘𝐶)𝑇)𝑓) ∈ (𝑅(Iso‘𝐶)𝑇))
289, 10, 20, 21, 22, 27brcici 17848 . . . . . . . . . . . . 13 (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅( ≃𝑐𝐶)𝑇)
2928ex 412 . . . . . . . . . . . 12 ((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3029ex 412 . . . . . . . . . . 11 (𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3130exlimiv 1928 . . . . . . . . . 10 (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3231com12 32 . . . . . . . . 9 (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3332exlimiv 1928 . . . . . . . 8 (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇)))
3433imp 406 . . . . . . 7 ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐𝐶)𝑇))
3534com12 32 . . . . . 6 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → 𝑅( ≃𝑐𝐶)𝑇))
3619, 35sylbid 240 . . . . 5 ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇))
3736ex 412 . . . 4 (𝐶 ∈ Cat → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)))
3837com23 86 . . 3 (𝐶 ∈ Cat → ((𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇)))
39383impib 1115 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐𝐶)𝑇))
408, 39mpd 15 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑇) → 𝑅( ≃𝑐𝐶)𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wex 1776  wcel 2106  cop 4637   class class class wbr 5148  cfv 6563  (class class class)co 7431  Basecbs 17245  compcco 17310  Catccat 17709  Isociso 17794  𝑐 ccic 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-supp 8185  df-cat 17713  df-cid 17714  df-sect 17795  df-inv 17796  df-iso 17797  df-cic 17844
This theorem is referenced by:  cicer  17854  nzerooringczr  21509
  Copyright terms: Public domain W3C validator