| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ciclcl 17846 | . . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) | 
| 2 |  | cicrcl 17847 | . . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) | 
| 3 | 1, 2 | jca 511 | . . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶))) | 
| 4 | 3 | ex 412 | . . . 4
⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐
‘𝐶)𝑆 → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)))) | 
| 5 |  | cicrcl 17847 | . . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆( ≃𝑐
‘𝐶)𝑇) → 𝑇 ∈ (Base‘𝐶)) | 
| 6 | 5 | ex 412 | . . . 4
⊢ (𝐶 ∈ Cat → (𝑆( ≃𝑐
‘𝐶)𝑇 → 𝑇 ∈ (Base‘𝐶))) | 
| 7 | 4, 6 | anim12d 609 | . . 3
⊢ (𝐶 ∈ Cat → ((𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) | 
| 8 | 7 | 3impib 1117 | . 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) | 
| 9 |  | eqid 2737 | . . . . . . . 8
⊢
(Iso‘𝐶) =
(Iso‘𝐶) | 
| 10 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) | 
| 11 |  | simpl 482 | . . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) | 
| 12 |  | simpll 767 | . . . . . . . . 9
⊢ (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) | 
| 13 | 12 | adantl 481 | . . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶)) | 
| 14 |  | simplr 769 | . . . . . . . . 9
⊢ (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶)) | 
| 15 | 14 | adantl 481 | . . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶)) | 
| 16 | 9, 10, 11, 13, 15 | cic 17843 | . . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))) | 
| 17 |  | simprr 773 | . . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑇 ∈ (Base‘𝐶)) | 
| 18 | 9, 10, 11, 15, 17 | cic 17843 | . . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑆( ≃𝑐 ‘𝐶)𝑇 ↔ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))) | 
| 19 | 16, 18 | anbi12d 632 | . . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) ↔ (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)))) | 
| 20 | 11 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝐶 ∈ Cat) | 
| 21 | 13 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅 ∈ (Base‘𝐶)) | 
| 22 | 17 | adantl 481 | . . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑇 ∈ (Base‘𝐶)) | 
| 23 |  | eqid 2737 | . . . . . . . . . . . . . . 15
⊢
(comp‘𝐶) =
(comp‘𝐶) | 
| 24 | 15 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑆 ∈ (Base‘𝐶)) | 
| 25 |  | simplr 769 | . . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) | 
| 26 |  | simpll 767 | . . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) | 
| 27 | 10, 23, 9, 20, 21, 24, 22, 25, 26 | isoco 17821 | . . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → (𝑔(〈𝑅, 𝑆〉(comp‘𝐶)𝑇)𝑓) ∈ (𝑅(Iso‘𝐶)𝑇)) | 
| 28 | 9, 10, 20, 21, 22, 27 | brcici 17844 | . . . . . . . . . . . . 13
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅( ≃𝑐 ‘𝐶)𝑇) | 
| 29 | 28 | ex 412 | . . . . . . . . . . . 12
⊢ ((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) | 
| 30 | 29 | ex 412 | . . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 31 | 30 | exlimiv 1930 | . . . . . . . . . 10
⊢
(∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 32 | 31 | com12 32 | . . . . . . . . 9
⊢ (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 33 | 32 | exlimiv 1930 | . . . . . . . 8
⊢
(∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 34 | 33 | imp 406 | . . . . . . 7
⊢
((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) | 
| 35 | 34 | com12 32 | . . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) | 
| 36 | 19, 35 | sylbid 240 | . . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) | 
| 37 | 36 | ex 412 | . . . 4
⊢ (𝐶 ∈ Cat → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 38 | 37 | com23 86 | . . 3
⊢ (𝐶 ∈ Cat → ((𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) | 
| 39 | 38 | 3impib 1117 | . 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) | 
| 40 | 8, 39 | mpd 15 | 1
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇) |