Step | Hyp | Ref
| Expression |
1 | | ciclcl 17495 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶)) |
2 | | cicrcl 17496 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶)) |
3 | 1, 2 | jca 511 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆) → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶))) |
4 | 3 | ex 412 |
. . . 4
⊢ (𝐶 ∈ Cat → (𝑅( ≃𝑐
‘𝐶)𝑆 → (𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)))) |
5 | | cicrcl 17496 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ 𝑆( ≃𝑐
‘𝐶)𝑇) → 𝑇 ∈ (Base‘𝐶)) |
6 | 5 | ex 412 |
. . . 4
⊢ (𝐶 ∈ Cat → (𝑆( ≃𝑐
‘𝐶)𝑇 → 𝑇 ∈ (Base‘𝐶))) |
7 | 4, 6 | anim12d 608 |
. . 3
⊢ (𝐶 ∈ Cat → ((𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) |
8 | 7 | 3impib 1114 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) |
9 | | eqid 2739 |
. . . . . . . 8
⊢
(Iso‘𝐶) =
(Iso‘𝐶) |
10 | | eqid 2739 |
. . . . . . . 8
⊢
(Base‘𝐶) =
(Base‘𝐶) |
11 | | simpl 482 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat) |
12 | | simpll 763 |
. . . . . . . . 9
⊢ (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶)) |
13 | 12 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶)) |
14 | | simplr 765 |
. . . . . . . . 9
⊢ (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶)) |
15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶)) |
16 | 9, 10, 11, 13, 15 | cic 17492 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐 ‘𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆))) |
17 | | simprr 769 |
. . . . . . . 8
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑇 ∈ (Base‘𝐶)) |
18 | 9, 10, 11, 15, 17 | cic 17492 |
. . . . . . 7
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → (𝑆( ≃𝑐 ‘𝐶)𝑇 ↔ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇))) |
19 | 16, 18 | anbi12d 630 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) ↔ (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)))) |
20 | 11 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝐶 ∈ Cat) |
21 | 13 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅 ∈ (Base‘𝐶)) |
22 | 17 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑇 ∈ (Base‘𝐶)) |
23 | | eqid 2739 |
. . . . . . . . . . . . . . 15
⊢
(comp‘𝐶) =
(comp‘𝐶) |
24 | 15 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑆 ∈ (Base‘𝐶)) |
25 | | simplr 765 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) |
26 | | simpll 763 |
. . . . . . . . . . . . . . 15
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) |
27 | 10, 23, 9, 20, 21, 24, 22, 25, 26 | isoco 17470 |
. . . . . . . . . . . . . 14
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → (𝑔(〈𝑅, 𝑆〉(comp‘𝐶)𝑇)𝑓) ∈ (𝑅(Iso‘𝐶)𝑇)) |
28 | 9, 10, 20, 21, 22, 27 | brcici 17493 |
. . . . . . . . . . . . 13
⊢ (((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) ∧ (𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)))) → 𝑅( ≃𝑐 ‘𝐶)𝑇) |
29 | 28 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) ∧ 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) |
30 | 29 | ex 412 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
31 | 30 | exlimiv 1936 |
. . . . . . . . . 10
⊢
(∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
32 | 31 | com12 32 |
. . . . . . . . 9
⊢ (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
33 | 32 | exlimiv 1936 |
. . . . . . . 8
⊢
(∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → (∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
34 | 33 | imp 406 |
. . . . . . 7
⊢
((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) |
35 | 34 | com12 32 |
. . . . . 6
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆(Iso‘𝐶)𝑇)) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) |
36 | 19, 35 | sylbid 239 |
. . . . 5
⊢ ((𝐶 ∈ Cat ∧ ((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶))) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) |
37 | 36 | ex 412 |
. . . 4
⊢ (𝐶 ∈ Cat → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → ((𝑅( ≃𝑐 ‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
38 | 37 | com23 86 |
. . 3
⊢ (𝐶 ∈ Cat → ((𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐 ‘𝐶)𝑇))) |
39 | 38 | 3impib 1114 |
. 2
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → (((𝑅 ∈ (Base‘𝐶) ∧ 𝑆 ∈ (Base‘𝐶)) ∧ 𝑇 ∈ (Base‘𝐶)) → 𝑅( ≃𝑐 ‘𝐶)𝑇)) |
40 | 8, 39 | mpd 15 |
1
⊢ ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐
‘𝐶)𝑆 ∧ 𝑆( ≃𝑐 ‘𝐶)𝑇) → 𝑅( ≃𝑐 ‘𝐶)𝑇) |