MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicref Structured version   Visualization version   GIF version

Theorem cicref 17523
Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicref ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)

Proof of Theorem cicref
StepHypRef Expression
1 eqid 2738 . 2 (Iso‘𝐶) = (Iso‘𝐶)
2 eqid 2738 . 2 (Base‘𝐶) = (Base‘𝐶)
3 simpl 483 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
4 simpr 485 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
5 eqid 2738 . . 3 (Id‘𝐶) = (Id‘𝐶)
62, 5, 3, 4idiso 17510 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑂) ∈ (𝑂(Iso‘𝐶)𝑂))
71, 2, 3, 4, 4, 6brcici 17522 1 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106   class class class wbr 5073  cfv 6426  Basecbs 16922  Catccat 17383  Idccid 17384  Isociso 17468  𝑐 ccic 17517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-1st 7820  df-2nd 7821  df-supp 7965  df-cat 17387  df-cid 17388  df-sect 17469  df-inv 17470  df-iso 17471  df-cic 17518
This theorem is referenced by:  cicer  17528
  Copyright terms: Public domain W3C validator