MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicref Structured version   Visualization version   GIF version

Theorem cicref 17710
Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicref ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)

Proof of Theorem cicref
StepHypRef Expression
1 eqid 2733 . 2 (Iso‘𝐶) = (Iso‘𝐶)
2 eqid 2733 . 2 (Base‘𝐶) = (Base‘𝐶)
3 simpl 482 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
4 simpr 484 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
5 eqid 2733 . . 3 (Id‘𝐶) = (Id‘𝐶)
62, 5, 3, 4idiso 17697 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑂) ∈ (𝑂(Iso‘𝐶)𝑂))
71, 2, 3, 4, 4, 6brcici 17709 1 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113   class class class wbr 5093  cfv 6486  Basecbs 17122  Catccat 17572  Idccid 17573  Isociso 17655  𝑐 ccic 17704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-supp 8097  df-cat 17576  df-cid 17577  df-sect 17656  df-inv 17657  df-iso 17658  df-cic 17705
This theorem is referenced by:  cicer  17715  cicerALT  49171
  Copyright terms: Public domain W3C validator