MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicref Structured version   Visualization version   GIF version

Theorem cicref 17858
Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicref ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)

Proof of Theorem cicref
StepHypRef Expression
1 eqid 2737 . 2 (Iso‘𝐶) = (Iso‘𝐶)
2 eqid 2737 . 2 (Base‘𝐶) = (Base‘𝐶)
3 simpl 482 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat)
4 simpr 484 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶))
5 eqid 2737 . . 3 (Id‘𝐶) = (Id‘𝐶)
62, 5, 3, 4idiso 17845 . 2 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑂) ∈ (𝑂(Iso‘𝐶)𝑂))
71, 2, 3, 4, 4, 6brcici 17857 1 ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐𝐶)𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5151  cfv 6569  Basecbs 17254  Catccat 17718  Idccid 17719  Isociso 17803  𝑐 ccic 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-supp 8194  df-cat 17722  df-cid 17723  df-sect 17804  df-inv 17805  df-iso 17806  df-cic 17853
This theorem is referenced by:  cicer  17863
  Copyright terms: Public domain W3C validator