![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cicref | Structured version Visualization version GIF version |
Description: Isomorphism is reflexive. (Contributed by AV, 5-Apr-2020.) |
Ref | Expression |
---|---|
cicref | ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐 ‘𝐶)𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ (Iso‘𝐶) = (Iso‘𝐶) | |
2 | eqid 2740 | . 2 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | simpl 482 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝐶 ∈ Cat) | |
4 | simpr 484 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂 ∈ (Base‘𝐶)) | |
5 | eqid 2740 | . . 3 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
6 | 2, 5, 3, 4 | idiso 17851 | . 2 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → ((Id‘𝐶)‘𝑂) ∈ (𝑂(Iso‘𝐶)𝑂)) |
7 | 1, 2, 3, 4, 4, 6 | brcici 17863 | 1 ⊢ ((𝐶 ∈ Cat ∧ 𝑂 ∈ (Base‘𝐶)) → 𝑂( ≃𝑐 ‘𝐶)𝑂) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6575 Basecbs 17260 Catccat 17724 Idccid 17725 Isociso 17809 ≃𝑐 ccic 17858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-supp 8204 df-cat 17728 df-cid 17729 df-sect 17810 df-inv 17811 df-iso 17812 df-cic 17859 |
This theorem is referenced by: cicer 17869 |
Copyright terms: Public domain | W3C validator |