| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2737 | . . . . . . . 8
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 2 |  | c0mhm.0 | . . . . . . . 8
⊢  0 =
(0g‘𝑇) | 
| 3 | 1, 2 | mndidcl 18762 | . . . . . . 7
⊢ (𝑇 ∈ Mnd → 0 ∈
(Base‘𝑇)) | 
| 4 | 3 | adantl 481 | . . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 0 ∈
(Base‘𝑇)) | 
| 5 | 4 | adantr 480 | . . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑇)) | 
| 6 |  | c0mhm.h | . . . . 5
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | 
| 7 | 5, 6 | fmptd 7134 | . . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇)) | 
| 8 | 3 | ancli 548 | . . . . . . . . 9
⊢ (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) | 
| 9 | 8 | adantl 481 | . . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) | 
| 10 |  | eqid 2737 | . . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) | 
| 11 | 1, 10, 2 | mndlid 18767 | . . . . . . . 8
⊢ ((𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇)) → (
0
(+g‘𝑇)
0 ) =
0
) | 
| 12 | 9, 11 | syl 17 | . . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ( 0
(+g‘𝑇)
0 ) =
0
) | 
| 13 | 12 | adantr 480 | . . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 0 (+g‘𝑇) 0 ) = 0 ) | 
| 14 | 6 | a1i 11 | . . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) | 
| 15 |  | eqidd 2738 | . . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 ) | 
| 16 |  | simprl 771 | . . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) | 
| 17 | 4 | adantr 480 | . . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 0 ∈ (Base‘𝑇)) | 
| 18 | 14, 15, 16, 17 | fvmptd 7023 | . . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑎) = 0 ) | 
| 19 |  | eqidd 2738 | . . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 ) | 
| 20 |  | simprr 773 | . . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) | 
| 21 | 14, 19, 20, 17 | fvmptd 7023 | . . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑏) = 0 ) | 
| 22 | 18, 21 | oveq12d 7449 | . . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) = ( 0 (+g‘𝑇) 0 )) | 
| 23 |  | eqidd 2738 | . . . . . . 7
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎(+g‘𝑆)𝑏)) → 0 = 0 ) | 
| 24 |  | c0mhm.b | . . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) | 
| 25 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) | 
| 26 | 24, 25 | mndcl 18755 | . . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 27 | 26 | 3expb 1121 | . . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 28 | 27 | adantlr 715 | . . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) | 
| 29 | 14, 23, 28, 17 | fvmptd 7023 | . . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = 0 ) | 
| 30 | 13, 22, 29 | 3eqtr4rd 2788 | . . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) | 
| 31 | 30 | ralrimivva 3202 | . . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) | 
| 32 | 6 | a1i 11 | . . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) | 
| 33 |  | eqidd 2738 | . . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 = (0g‘𝑆)) → 0 = 0 ) | 
| 34 |  | eqid 2737 | . . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) | 
| 35 | 24, 34 | mndidcl 18762 | . . . . . 6
⊢ (𝑆 ∈ Mnd →
(0g‘𝑆)
∈ 𝐵) | 
| 36 | 35 | adantr 480 | . . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(0g‘𝑆)
∈ 𝐵) | 
| 37 | 32, 33, 36, 4 | fvmptd 7023 | . . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻‘(0g‘𝑆)) = 0 ) | 
| 38 | 7, 31, 37 | 3jca 1129 | . . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 )) | 
| 39 | 38 | ancli 548 | . 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 ))) | 
| 40 | 24, 1, 25, 10, 34, 2 | ismhm 18798 | . 2
⊢ (𝐻 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 ))) | 
| 41 | 39, 40 | sylibr 234 | 1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |