Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑇) =
(Base‘𝑇) |
2 | | c0mhm.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝑇) |
3 | 1, 2 | mndidcl 18315 |
. . . . . . 7
⊢ (𝑇 ∈ Mnd → 0 ∈
(Base‘𝑇)) |
4 | 3 | adantl 481 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 0 ∈
(Base‘𝑇)) |
5 | 4 | adantr 480 |
. . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 ∈ 𝐵) → 0 ∈ (Base‘𝑇)) |
6 | | c0mhm.h |
. . . . 5
⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
7 | 5, 6 | fmptd 6970 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇)) |
8 | 3 | ancli 548 |
. . . . . . . . 9
⊢ (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) |
9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇))) |
10 | | eqid 2738 |
. . . . . . . . 9
⊢
(+g‘𝑇) = (+g‘𝑇) |
11 | 1, 10, 2 | mndlid 18320 |
. . . . . . . 8
⊢ ((𝑇 ∈ Mnd ∧ 0 ∈
(Base‘𝑇)) → (
0
(+g‘𝑇)
0 ) =
0
) |
12 | 9, 11 | syl 17 |
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ( 0
(+g‘𝑇)
0 ) =
0
) |
13 | 12 | adantr 480 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ( 0 (+g‘𝑇) 0 ) = 0 ) |
14 | 6 | a1i 11 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
15 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 ) |
16 | | simprl 767 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑎 ∈ 𝐵) |
17 | 4 | adantr 480 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 0 ∈ (Base‘𝑇)) |
18 | 14, 15, 16, 17 | fvmptd 6864 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑎) = 0 ) |
19 | | eqidd 2739 |
. . . . . . . 8
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 ) |
20 | | simprr 769 |
. . . . . . . 8
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → 𝑏 ∈ 𝐵) |
21 | 14, 19, 20, 17 | fvmptd 6864 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘𝑏) = 0 ) |
22 | 18, 21 | oveq12d 7273 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) = ( 0 (+g‘𝑇) 0 )) |
23 | | eqidd 2739 |
. . . . . . 7
⊢ ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) ∧ 𝑥 = (𝑎(+g‘𝑆)𝑏)) → 0 = 0 ) |
24 | | c0mhm.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝑆) |
25 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑆) = (+g‘𝑆) |
26 | 24, 25 | mndcl 18308 |
. . . . . . . . 9
⊢ ((𝑆 ∈ Mnd ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) |
27 | 26 | 3expb 1118 |
. . . . . . . 8
⊢ ((𝑆 ∈ Mnd ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) |
28 | 27 | adantlr 711 |
. . . . . . 7
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝑎(+g‘𝑆)𝑏) ∈ 𝐵) |
29 | 14, 23, 28, 17 | fvmptd 6864 |
. . . . . 6
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = 0 ) |
30 | 13, 22, 29 | 3eqtr4rd 2789 |
. . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) |
31 | 30 | ralrimivva 3114 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏))) |
32 | 6 | a1i 11 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 )) |
33 | | eqidd 2739 |
. . . . 5
⊢ (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 = (0g‘𝑆)) → 0 = 0 ) |
34 | | eqid 2738 |
. . . . . . 7
⊢
(0g‘𝑆) = (0g‘𝑆) |
35 | 24, 34 | mndidcl 18315 |
. . . . . 6
⊢ (𝑆 ∈ Mnd →
(0g‘𝑆)
∈ 𝐵) |
36 | 35 | adantr 480 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(0g‘𝑆)
∈ 𝐵) |
37 | 32, 33, 36, 4 | fvmptd 6864 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻‘(0g‘𝑆)) = 0 ) |
38 | 7, 31, 37 | 3jca 1126 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 )) |
39 | 38 | ancli 548 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 ))) |
40 | 24, 1, 25, 10, 34, 2 | ismhm 18347 |
. 2
⊢ (𝐻 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎 ∈ 𝐵 ∀𝑏 ∈ 𝐵 (𝐻‘(𝑎(+g‘𝑆)𝑏)) = ((𝐻‘𝑎)(+g‘𝑇)(𝐻‘𝑏)) ∧ (𝐻‘(0g‘𝑆)) = 0 ))) |
41 | 39, 40 | sylibr 233 |
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |