MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0mhm Structured version   Visualization version   GIF version

Theorem c0mhm 20382
Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0mhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0mhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
2 c0mhm.0 . . . . . . . 8 0 = (0g𝑇)
31, 2mndidcl 18661 . . . . . . 7 (𝑇 ∈ Mnd → 0 ∈ (Base‘𝑇))
43adantl 481 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 0 ∈ (Base‘𝑇))
54adantr 480 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑇))
6 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
75, 6fmptd 7055 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇))
83ancli 548 . . . . . . . . 9 (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
98adantl 481 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
10 eqid 2733 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
111, 10, 2mndlid 18666 . . . . . . . 8 ((𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)) → ( 0 (+g𝑇) 0 ) = 0 )
129, 11syl 17 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ( 0 (+g𝑇) 0 ) = 0 )
1312adantr 480 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ( 0 (+g𝑇) 0 ) = 0 )
146a1i 11 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝐻 = (𝑥𝐵0 ))
15 eqidd 2734 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 )
16 simprl 770 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
174adantr 480 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 0 ∈ (Base‘𝑇))
1814, 15, 16, 17fvmptd 6944 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑎) = 0 )
19 eqidd 2734 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 )
20 simprr 772 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
2114, 19, 20, 17fvmptd 6944 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑏) = 0 )
2218, 21oveq12d 7372 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) = ( 0 (+g𝑇) 0 ))
23 eqidd 2734 . . . . . . 7 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = (𝑎(+g𝑆)𝑏)) → 0 = 0 )
24 c0mhm.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
25 eqid 2733 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
2624, 25mndcl 18654 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
27263expb 1120 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2827adantlr 715 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2914, 23, 28, 17fvmptd 6944 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = 0 )
3013, 22, 293eqtr4rd 2779 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
3130ralrimivva 3176 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
326a1i 11 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 = (𝑥𝐵0 ))
33 eqidd 2734 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 = (0g𝑆)) → 0 = 0 )
34 eqid 2733 . . . . . . 7 (0g𝑆) = (0g𝑆)
3524, 34mndidcl 18661 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ 𝐵)
3635adantr 480 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (0g𝑆) ∈ 𝐵)
3732, 33, 36, 4fvmptd 6944 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻‘(0g𝑆)) = 0 )
387, 31, 373jca 1128 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 ))
3938ancli 548 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4024, 1, 25, 10, 34, 2ismhm 18697 . 2 (𝐻 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4139, 40sylibr 234 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  cmpt 5176  wf 6484  cfv 6488  (class class class)co 7354  Basecbs 17124  +gcplusg 17165  0gc0g 17347  Mndcmnd 18646   MndHom cmhm 18693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-map 8760  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695
This theorem is referenced by:  c0ghm  20383  c0rhm  20453
  Copyright terms: Public domain W3C validator