Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rhm Structured version   Visualization version   GIF version

Theorem c0rhm 44203
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rhm ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rhm
StepHypRef Expression
1 eldifi 4103 . . 3 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
21anim2i 618 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring))
3 ringgrp 19302 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4 ringgrp 19302 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
51, 4syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
6 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
7 c0mhm.0 . . . . 5 0 = (0g𝑇)
8 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
96, 7, 8c0ghm 44202 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
103, 5, 9syl2an 597 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
11 eqid 2821 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
12 eqid 2821 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1311, 7, 120ring1eq0 44163 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
1413eqcomd 2827 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
1514mpteq2dv 5162 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
1615adantl 484 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
178, 16syl5eq 2868 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
18 eqid 2821 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918ringmgp 19303 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
20 eqid 2821 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2120ringmgp 19303 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
221, 21syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
2318, 6mgpbas 19245 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
2420, 12ringidval 19253 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
25 eqid 2821 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
2623, 24, 25c0mhm 44201 . . . . 5 (((mulGrp‘𝑆) ∈ Mnd ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2719, 22, 26syl2an 597 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2817, 27eqeltrd 2913 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2910, 28jca 514 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))
3018, 20isrhm 19473 . 2 (𝐻 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
312, 29, 30sylanbrc 585 1 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  cdif 3933  cmpt 5146  cfv 6355  (class class class)co 7156  Basecbs 16483  0gc0g 16713  Mndcmnd 17911   MndHom cmhm 17954  Grpcgrp 18103   GrpHom cghm 18355  mulGrpcmgp 19239  1rcur 19251  Ringcrg 19297   RingHom crh 19464  NzRingcnzr 20030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-plusg 16578  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-rnghom 19467  df-nzr 20031
This theorem is referenced by:  zrtermoringc  44361
  Copyright terms: Public domain W3C validator