MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0rhm Structured version   Visualization version   GIF version

Theorem c0rhm 20510
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0rhm.b 𝐵 = (Base‘𝑆)
c0rhm.0 0 = (0g𝑇)
c0rhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rhm ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rhm
StepHypRef Expression
1 eldifi 4124 . . 3 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
21anim2i 615 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring))
3 ringgrp 20215 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4 ringgrp 20215 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
51, 4syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
6 c0rhm.b . . . . 5 𝐵 = (Base‘𝑆)
7 c0rhm.0 . . . . 5 0 = (0g𝑇)
8 c0rhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
96, 7, 8c0ghm 20437 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
103, 5, 9syl2an 594 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
11 eqid 2726 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
12 eqid 2726 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1311, 7, 120ring1eq0 20509 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
1413eqcomd 2732 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
1514mpteq2dv 5246 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
1615adantl 480 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
178, 16eqtrid 2778 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
18 eqid 2726 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918ringmgp 20216 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
20 eqid 2726 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2120ringmgp 20216 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
221, 21syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
2318, 6mgpbas 20117 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
2420, 12ringidval 20160 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
25 eqid 2726 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
2623, 24, 25c0mhm 20436 . . . . 5 (((mulGrp‘𝑆) ∈ Mnd ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2719, 22, 26syl2an 594 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2817, 27eqeltrd 2826 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2910, 28jca 510 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))
3018, 20isrhm 20454 . 2 (𝐻 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
312, 29, 30sylanbrc 581 1 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cdif 3944  cmpt 5227  cfv 6544  (class class class)co 7414  Basecbs 17206  0gc0g 17447  Mndcmnd 18720   MndHom cmhm 18764  Grpcgrp 18921   GrpHom cghm 19200  mulGrpcmgp 20111  1rcur 20158  Ringcrg 20210   RingHom crh 20445  NzRingcnzr 20488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3365  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oadd 8490  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9935  df-card 9973  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-2 12319  df-n0 12517  df-xnn0 12589  df-z 12603  df-uz 12867  df-fz 13531  df-hash 14341  df-sets 17159  df-slot 17177  df-ndx 17189  df-base 17207  df-plusg 17272  df-0g 17449  df-mgm 18626  df-sgrp 18705  df-mnd 18721  df-mhm 18766  df-grp 18924  df-minusg 18925  df-ghm 19201  df-cmn 19774  df-abl 19775  df-mgp 20112  df-rng 20130  df-ur 20159  df-ring 20212  df-rhm 20448  df-nzr 20489
This theorem is referenced by:  zrtermoringc  20647
  Copyright terms: Public domain W3C validator