Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0rhm Structured version   Visualization version   GIF version

Theorem c0rhm 45829
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0rhm ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0rhm
StepHypRef Expression
1 eldifi 4073 . . 3 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring)
21anim2i 617 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring))
3 ringgrp 19883 . . . 4 (𝑆 ∈ Ring → 𝑆 ∈ Grp)
4 ringgrp 19883 . . . . 5 (𝑇 ∈ Ring → 𝑇 ∈ Grp)
51, 4syl 17 . . . 4 (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp)
6 c0mhm.b . . . . 5 𝐵 = (Base‘𝑆)
7 c0mhm.0 . . . . 5 0 = (0g𝑇)
8 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
96, 7, 8c0ghm 45828 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
103, 5, 9syl2an 596 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
11 eqid 2736 . . . . . . . . 9 (Base‘𝑇) = (Base‘𝑇)
12 eqid 2736 . . . . . . . . 9 (1r𝑇) = (1r𝑇)
1311, 7, 120ring1eq0 45789 . . . . . . . 8 (𝑇 ∈ (Ring ∖ NzRing) → (1r𝑇) = 0 )
1413eqcomd 2742 . . . . . . 7 (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r𝑇))
1514mpteq2dv 5194 . . . . . 6 (𝑇 ∈ (Ring ∖ NzRing) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
1615adantl 482 . . . . 5 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵0 ) = (𝑥𝐵 ↦ (1r𝑇)))
178, 16eqtrid 2788 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥𝐵 ↦ (1r𝑇)))
18 eqid 2736 . . . . . 6 (mulGrp‘𝑆) = (mulGrp‘𝑆)
1918ringmgp 19884 . . . . 5 (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd)
20 eqid 2736 . . . . . . 7 (mulGrp‘𝑇) = (mulGrp‘𝑇)
2120ringmgp 19884 . . . . . 6 (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd)
221, 21syl 17 . . . . 5 (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd)
2318, 6mgpbas 19821 . . . . . 6 𝐵 = (Base‘(mulGrp‘𝑆))
2420, 12ringidval 19834 . . . . . 6 (1r𝑇) = (0g‘(mulGrp‘𝑇))
25 eqid 2736 . . . . . 6 (𝑥𝐵 ↦ (1r𝑇)) = (𝑥𝐵 ↦ (1r𝑇))
2623, 24, 25c0mhm 45827 . . . . 5 (((mulGrp‘𝑆) ∈ Mnd ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2719, 22, 26syl2an 596 . . . 4 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥𝐵 ↦ (1r𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2817, 27eqeltrd 2837 . . 3 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))
2910, 28jca 512 . 2 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))
3018, 20isrhm 20060 . 2 (𝐻 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))))
312, 29, 30sylanbrc 583 1 ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cdif 3895  cmpt 5175  cfv 6479  (class class class)co 7337  Basecbs 17009  0gc0g 17247  Mndcmnd 18482   MndHom cmhm 18525  Grpcgrp 18673   GrpHom cghm 18927  mulGrpcmgp 19815  1rcur 19832  Ringcrg 19878   RingHom crh 20051  NzRingcnzr 20634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-oadd 8371  df-er 8569  df-map 8688  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-hash 14146  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-plusg 17072  df-0g 17249  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-grp 18676  df-minusg 18677  df-ghm 18928  df-mgp 19816  df-ur 19833  df-ring 19880  df-rnghom 20054  df-nzr 20635
This theorem is referenced by:  zrtermoringc  45987
  Copyright terms: Public domain W3C validator