![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > c0rhm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
Ref | Expression |
---|---|
c0rhm.b | ⊢ 𝐵 = (Base‘𝑆) |
c0rhm.0 | ⊢ 0 = (0g‘𝑇) |
c0rhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
Ref | Expression |
---|---|
c0rhm | ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifi 4126 | . . 3 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Ring) | |
2 | 1 | anim2i 617 | . 2 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑆 ∈ Ring ∧ 𝑇 ∈ Ring)) |
3 | ringgrp 20132 | . . . 4 ⊢ (𝑆 ∈ Ring → 𝑆 ∈ Grp) | |
4 | ringgrp 20132 | . . . . 5 ⊢ (𝑇 ∈ Ring → 𝑇 ∈ Grp) | |
5 | 1, 4 | syl 17 | . . . 4 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 𝑇 ∈ Grp) |
6 | c0rhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
7 | c0rhm.0 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
8 | c0rhm.h | . . . . 5 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
9 | 6, 7, 8 | c0ghm 20352 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
10 | 3, 5, 9 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
11 | eqid 2732 | . . . . . . . . 9 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
12 | eqid 2732 | . . . . . . . . 9 ⊢ (1r‘𝑇) = (1r‘𝑇) | |
13 | 11, 7, 12 | 0ring1eq0 20422 | . . . . . . . 8 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (1r‘𝑇) = 0 ) |
14 | 13 | eqcomd 2738 | . . . . . . 7 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → 0 = (1r‘𝑇)) |
15 | 14 | mpteq2dv 5250 | . . . . . 6 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
16 | 15 | adantl 482 | . . . . 5 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ 0 ) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
17 | 8, 16 | eqtrid 2784 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇))) |
18 | eqid 2732 | . . . . . 6 ⊢ (mulGrp‘𝑆) = (mulGrp‘𝑆) | |
19 | 18 | ringmgp 20133 | . . . . 5 ⊢ (𝑆 ∈ Ring → (mulGrp‘𝑆) ∈ Mnd) |
20 | eqid 2732 | . . . . . . 7 ⊢ (mulGrp‘𝑇) = (mulGrp‘𝑇) | |
21 | 20 | ringmgp 20133 | . . . . . 6 ⊢ (𝑇 ∈ Ring → (mulGrp‘𝑇) ∈ Mnd) |
22 | 1, 21 | syl 17 | . . . . 5 ⊢ (𝑇 ∈ (Ring ∖ NzRing) → (mulGrp‘𝑇) ∈ Mnd) |
23 | 18, 6 | mgpbas 20034 | . . . . . 6 ⊢ 𝐵 = (Base‘(mulGrp‘𝑆)) |
24 | 20, 12 | ringidval 20077 | . . . . . 6 ⊢ (1r‘𝑇) = (0g‘(mulGrp‘𝑇)) |
25 | eqid 2732 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) = (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) | |
26 | 23, 24, 25 | c0mhm 20351 | . . . . 5 ⊢ (((mulGrp‘𝑆) ∈ Mnd ∧ (mulGrp‘𝑇) ∈ Mnd) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
27 | 19, 22, 26 | syl2an 596 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝑥 ∈ 𝐵 ↦ (1r‘𝑇)) ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
28 | 17, 27 | eqeltrd 2833 | . . 3 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))) |
29 | 10, 28 | jca 512 | . 2 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇)))) |
30 | 18, 20 | isrhm 20369 | . 2 ⊢ (𝐻 ∈ (𝑆 RingHom 𝑇) ↔ ((𝑆 ∈ Ring ∧ 𝑇 ∈ Ring) ∧ (𝐻 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐻 ∈ ((mulGrp‘𝑆) MndHom (mulGrp‘𝑇))))) |
31 | 2, 29, 30 | sylanbrc 583 | 1 ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7411 Basecbs 17148 0gc0g 17389 Mndcmnd 18659 MndHom cmhm 18703 Grpcgrp 18855 GrpHom cghm 19127 mulGrpcmgp 20028 1rcur 20075 Ringcrg 20127 RingHom crh 20360 NzRingcnzr 20403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13489 df-hash 14295 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-minusg 18859 df-ghm 19128 df-cmn 19691 df-abl 19692 df-mgp 20029 df-rng 20047 df-ur 20076 df-ring 20129 df-rhm 20363 df-nzr 20404 |
This theorem is referenced by: zrtermoringc 47057 |
Copyright terms: Public domain | W3C validator |