![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > c0ghm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
Ref | Expression |
---|---|
c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) |
c0mhm.0 | ⊢ 0 = (0g‘𝑇) |
c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
Ref | Expression |
---|---|
c0ghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18868 | . . . 4 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
2 | grpmnd 18868 | . . . 4 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
4 | c0mhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
5 | c0mhm.0 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
6 | c0mhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
7 | 4, 5, 6 | c0mhm 20358 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
9 | ghmmhmb 19148 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
10 | 9 | eleq2d 2818 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇))) |
11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 0gc0g 17392 Mndcmnd 18665 MndHom cmhm 18709 Grpcgrp 18861 GrpHom cghm 19134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-map 8828 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-ghm 19135 |
This theorem is referenced by: c0rhm 20430 c0rnghm 20431 |
Copyright terms: Public domain | W3C validator |