|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > c0ghm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) | 
| c0mhm.0 | ⊢ 0 = (0g‘𝑇) | 
| c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | 
| Ref | Expression | 
|---|---|
| c0ghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grpmnd 18958 | . . . 4 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
| 2 | grpmnd 18958 | . . . 4 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) | 
| 4 | c0mhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | c0mhm.0 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
| 6 | c0mhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 7 | 4, 5, 6 | c0mhm 20460 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | 
| 8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇)) | 
| 9 | ghmmhmb 19245 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
| 10 | 9 | eleq2d 2827 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇))) | 
| 11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5225 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 0gc0g 17484 Mndcmnd 18747 MndHom cmhm 18794 Grpcgrp 18951 GrpHom cghm 19230 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-map 8868 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-grp 18954 df-ghm 19231 | 
| This theorem is referenced by: c0rhm 20534 c0rnghm 20535 | 
| Copyright terms: Public domain | W3C validator |