Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0ghm | Structured version Visualization version GIF version |
Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
Ref | Expression |
---|---|
c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) |
c0mhm.0 | ⊢ 0 = (0g‘𝑇) |
c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
Ref | Expression |
---|---|
c0ghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18499 | . . . 4 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
2 | grpmnd 18499 | . . . 4 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
3 | 1, 2 | anim12i 612 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
4 | c0mhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
5 | c0mhm.0 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
6 | c0mhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
7 | 4, 5, 6 | c0mhm 45356 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
9 | ghmmhmb 18760 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
10 | 9 | eleq2d 2824 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇))) |
11 | 8, 10 | mpbird 256 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 0gc0g 17067 Mndcmnd 18300 MndHom cmhm 18343 Grpcgrp 18492 GrpHom cghm 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-grp 18495 df-ghm 18747 |
This theorem is referenced by: c0rhm 45358 c0rnghm 45359 |
Copyright terms: Public domain | W3C validator |