MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  c0ghm Structured version   Visualization version   GIF version

Theorem c0ghm 20346
Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0ghm ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0ghm
StepHypRef Expression
1 grpmnd 18819 . . . 4 (𝑆 ∈ Grp → 𝑆 ∈ Mnd)
2 grpmnd 18819 . . . 4 (𝑇 ∈ Grp → 𝑇 ∈ Mnd)
31, 2anim12i 613 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd))
4 c0mhm.b . . . 4 𝐵 = (Base‘𝑆)
5 c0mhm.0 . . . 4 0 = (0g𝑇)
6 c0mhm.h . . . 4 𝐻 = (𝑥𝐵0 )
74, 5, 6c0mhm 20345 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
83, 7syl 17 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇))
9 ghmmhmb 19106 . . 3 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇))
109eleq2d 2814 . 2 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇)))
118, 10mpbird 257 1 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5173  cfv 6482  (class class class)co 7349  Basecbs 17120  0gc0g 17343  Mndcmnd 18608   MndHom cmhm 18655  Grpcgrp 18812   GrpHom cghm 19091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-grp 18815  df-ghm 19092
This theorem is referenced by:  c0rhm  20419  c0rnghm  20420
  Copyright terms: Public domain W3C validator