| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c0ghm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
| Ref | Expression |
|---|---|
| c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| c0mhm.0 | ⊢ 0 = (0g‘𝑇) |
| c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| Ref | Expression |
|---|---|
| c0ghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18923 | . . . 4 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
| 2 | grpmnd 18923 | . . . 4 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
| 4 | c0mhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | c0mhm.0 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
| 6 | c0mhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 7 | 4, 5, 6 | c0mhm 20420 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
| 9 | ghmmhmb 19210 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
| 10 | 9 | eleq2d 2820 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇))) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 0gc0g 17453 Mndcmnd 18712 MndHom cmhm 18759 Grpcgrp 18916 GrpHom cghm 19195 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-map 8842 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mhm 18761 df-grp 18919 df-ghm 19196 |
| This theorem is referenced by: c0rhm 20494 c0rnghm 20495 |
| Copyright terms: Public domain | W3C validator |