| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > c0ghm | Structured version Visualization version GIF version | ||
| Description: The constant mapping to zero is a group homomorphism. (Contributed by AV, 16-Apr-2020.) |
| Ref | Expression |
|---|---|
| c0mhm.b | ⊢ 𝐵 = (Base‘𝑆) |
| c0mhm.0 | ⊢ 0 = (0g‘𝑇) |
| c0mhm.h | ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) |
| Ref | Expression |
|---|---|
| c0ghm | ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpmnd 18872 | . . . 4 ⊢ (𝑆 ∈ Grp → 𝑆 ∈ Mnd) | |
| 2 | grpmnd 18872 | . . . 4 ⊢ (𝑇 ∈ Grp → 𝑇 ∈ Mnd) | |
| 3 | 1, 2 | anim12i 613 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd)) |
| 4 | c0mhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑆) | |
| 5 | c0mhm.0 | . . . 4 ⊢ 0 = (0g‘𝑇) | |
| 6 | c0mhm.h | . . . 4 ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) | |
| 7 | 4, 5, 6 | c0mhm 20369 | . . 3 ⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
| 8 | 3, 7 | syl 17 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 MndHom 𝑇)) |
| 9 | ghmmhmb 19159 | . . 3 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | |
| 10 | 9 | eleq2d 2814 | . 2 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐻 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐻 ∈ (𝑆 MndHom 𝑇))) |
| 11 | 8, 10 | mpbird 257 | 1 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → 𝐻 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 0gc0g 17402 Mndcmnd 18661 MndHom cmhm 18708 Grpcgrp 18865 GrpHom cghm 19144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-ghm 19145 |
| This theorem is referenced by: c0rhm 20443 c0rnghm 20444 |
| Copyright terms: Public domain | W3C validator |