![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofid0l | Structured version Visualization version GIF version |
Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
caofref.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofref.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
caofid0.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
caofid0l.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝑥) |
Ref | Expression |
---|---|
caofid0l | ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | caofid0.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | fnconstg 6797 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐴 × {𝐵}) Fn 𝐴) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) Fn 𝐴) |
5 | caofref.2 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
6 | 5 | ffnd 6738 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
7 | fvconst2g 7222 | . . 3 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) | |
8 | 2, 7 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝑤) = 𝐵) |
9 | eqidd 2736 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) = (𝐹‘𝑤)) | |
10 | caofid0l.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐵𝑅𝑥) = 𝑥) | |
11 | 10 | ralrimiva 3144 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝑥) |
12 | 5 | ffvelcdmda 7104 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝑆) |
13 | oveq2 7439 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → (𝐵𝑅𝑥) = (𝐵𝑅(𝐹‘𝑤))) | |
14 | id 22 | . . . . 5 ⊢ (𝑥 = (𝐹‘𝑤) → 𝑥 = (𝐹‘𝑤)) | |
15 | 13, 14 | eqeq12d 2751 | . . . 4 ⊢ (𝑥 = (𝐹‘𝑤) → ((𝐵𝑅𝑥) = 𝑥 ↔ (𝐵𝑅(𝐹‘𝑤)) = (𝐹‘𝑤))) |
16 | 15 | rspccva 3621 | . . 3 ⊢ ((∀𝑥 ∈ 𝑆 (𝐵𝑅𝑥) = 𝑥 ∧ (𝐹‘𝑤) ∈ 𝑆) → (𝐵𝑅(𝐹‘𝑤)) = (𝐹‘𝑤)) |
17 | 11, 12, 16 | syl2an2r 685 | . 2 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐵𝑅(𝐹‘𝑤)) = (𝐹‘𝑤)) |
18 | 1, 4, 6, 6, 8, 9, 17 | offveq 7723 | 1 ⊢ (𝜑 → ((𝐴 × {𝐵}) ∘f 𝑅𝐹) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 {csn 4631 × cxp 5687 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ∘f cof 7695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 |
This theorem is referenced by: mndvlid 18825 psr0lid 21991 psrlmod 21998 lfladd0l 39056 mendlmod 43178 |
Copyright terms: Public domain | W3C validator |