MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr0lid Structured version   Visualization version   GIF version

Theorem psr0lid 20874
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psr0cl.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr0cl.o 0 = (0g𝑅)
psr0cl.b 𝐵 = (Base‘𝑆)
psr0lid.p + = (+g𝑆)
psr0lid.x (𝜑𝑋𝐵)
Assertion
Ref Expression
psr0lid (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   + (𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑉(𝑓)   𝑋(𝑓)   0 (𝑓)

Proof of Theorem psr0lid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 psr0cl.b . . 3 𝐵 = (Base‘𝑆)
3 eqid 2736 . . 3 (+g𝑅) = (+g𝑅)
4 psr0lid.p . . 3 + = (+g𝑆)
5 psrgrp.i . . . 4 (𝜑𝐼𝑉)
6 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
7 psr0cl.d . . . 4 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
8 psr0cl.o . . . 4 0 = (0g𝑅)
91, 5, 6, 7, 8, 2psr0cl 20873 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
10 psr0lid.x . . 3 (𝜑𝑋𝐵)
111, 2, 3, 4, 9, 10psradd 20861 . 2 (𝜑 → ((𝐷 × { 0 }) + 𝑋) = ((𝐷 × { 0 }) ∘f (+g𝑅)𝑋))
12 ovex 7224 . . . . 5 (ℕ0m 𝐼) ∈ V
137, 12rabex2 5212 . . . 4 𝐷 ∈ V
1413a1i 11 . . 3 (𝜑𝐷 ∈ V)
15 eqid 2736 . . . 4 (Base‘𝑅) = (Base‘𝑅)
161, 15, 7, 2, 10psrelbas 20858 . . 3 (𝜑𝑋:𝐷⟶(Base‘𝑅))
178fvexi 6709 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
1915, 3, 8grplid 18351 . . . 4 ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
206, 19sylan 583 . . 3 ((𝜑𝑥 ∈ (Base‘𝑅)) → ( 0 (+g𝑅)𝑥) = 𝑥)
2114, 16, 18, 20caofid0l 7477 . 2 (𝜑 → ((𝐷 × { 0 }) ∘f (+g𝑅)𝑋) = 𝑋)
2211, 21eqtrd 2771 1 (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {crab 3055  Vcvv 3398  {csn 4527   × cxp 5534  ccnv 5535  cima 5539  cfv 6358  (class class class)co 7191  f cof 7445  m cmap 8486  Fincfn 8604  cn 11795  0cn0 12055  Basecbs 16666  +gcplusg 16749  0gc0g 16898  Grpcgrp 18319   mPwSer cmps 20817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-tset 16768  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-psr 20822
This theorem is referenced by:  psrgrp  20877  psr0  20878
  Copyright terms: Public domain W3C validator