![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr0lid | Structured version Visualization version GIF version |
Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psr0cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psr0cl.o | ⊢ 0 = (0g‘𝑅) |
psr0cl.b | ⊢ 𝐵 = (Base‘𝑆) |
psr0lid.p | ⊢ + = (+g‘𝑆) |
psr0lid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
psr0lid | ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrgrp.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | psr0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
3 | eqid 2733 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
4 | psr0lid.p | . . 3 ⊢ + = (+g‘𝑆) | |
5 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
6 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
7 | psr0cl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
8 | psr0cl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
9 | 1, 5, 6, 7, 8, 2 | psr0cl 21513 | . . 3 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) |
10 | psr0lid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
11 | 1, 2, 3, 4, 9, 10 | psradd 21501 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = ((𝐷 × { 0 }) ∘f (+g‘𝑅)𝑋)) |
12 | ovex 7442 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
13 | 7, 12 | rabex2 5335 | . . . 4 ⊢ 𝐷 ∈ V |
14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
15 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | 1, 15, 7, 2, 10 | psrelbas 21498 | . . 3 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
17 | 8 | fvexi 6906 | . . . 4 ⊢ 0 ∈ V |
18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) |
19 | 15, 3, 8 | grplid 18852 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
20 | 6, 19 | sylan 581 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
21 | 14, 16, 18, 20 | caofid0l 7701 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) ∘f (+g‘𝑅)𝑋) = 𝑋) |
22 | 11, 21 | eqtrd 2773 | 1 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 Vcvv 3475 {csn 4629 × cxp 5675 ◡ccnv 5676 “ cima 5680 ‘cfv 6544 (class class class)co 7409 ∘f cof 7668 ↑m cmap 8820 Fincfn 8939 ℕcn 12212 ℕ0cn0 12472 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Grpcgrp 18819 mPwSer cmps 21457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-plusg 17210 df-mulr 17211 df-sca 17213 df-vsca 17214 df-tset 17216 df-0g 17387 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-grp 18822 df-psr 21462 |
This theorem is referenced by: psrgrpOLD 21518 psr0 21519 |
Copyright terms: Public domain | W3C validator |