|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > psr0lid | Structured version Visualization version GIF version | ||
| Description: The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) | 
| psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| psr0cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | 
| psr0cl.o | ⊢ 0 = (0g‘𝑅) | 
| psr0cl.b | ⊢ 𝐵 = (Base‘𝑆) | 
| psr0lid.p | ⊢ + = (+g‘𝑆) | 
| psr0lid.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| Ref | Expression | 
|---|---|
| psr0lid | ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | psrgrp.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
| 2 | psr0cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
| 3 | eqid 2736 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 4 | psr0lid.p | . . 3 ⊢ + = (+g‘𝑆) | |
| 5 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 6 | psrgrp.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
| 7 | psr0cl.d | . . . 4 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑m 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | psr0cl.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 9 | 1, 5, 6, 7, 8, 2 | psr0cl 21973 | . . 3 ⊢ (𝜑 → (𝐷 × { 0 }) ∈ 𝐵) | 
| 10 | psr0lid.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4, 9, 10 | psradd 21958 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = ((𝐷 × { 0 }) ∘f (+g‘𝑅)𝑋)) | 
| 12 | ovex 7465 | . . . . 5 ⊢ (ℕ0 ↑m 𝐼) ∈ V | |
| 13 | 7, 12 | rabex2 5340 | . . . 4 ⊢ 𝐷 ∈ V | 
| 14 | 13 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) | 
| 15 | eqid 2736 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 16 | 1, 15, 7, 2, 10 | psrelbas 21955 | . . 3 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) | 
| 17 | 8 | fvexi 6919 | . . . 4 ⊢ 0 ∈ V | 
| 18 | 17 | a1i 11 | . . 3 ⊢ (𝜑 → 0 ∈ V) | 
| 19 | 15, 3, 8 | grplid 18986 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) | 
| 20 | 6, 19 | sylan 580 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 (+g‘𝑅)𝑥) = 𝑥) | 
| 21 | 14, 16, 18, 20 | caofid0l 7731 | . 2 ⊢ (𝜑 → ((𝐷 × { 0 }) ∘f (+g‘𝑅)𝑋) = 𝑋) | 
| 22 | 11, 21 | eqtrd 2776 | 1 ⊢ (𝜑 → ((𝐷 × { 0 }) + 𝑋) = 𝑋) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3435 Vcvv 3479 {csn 4625 × cxp 5682 ◡ccnv 5683 “ cima 5687 ‘cfv 6560 (class class class)co 7432 ∘f cof 7696 ↑m cmap 8867 Fincfn 8986 ℕcn 12267 ℕ0cn0 12528 Basecbs 17248 +gcplusg 17298 0gc0g 17485 Grpcgrp 18952 mPwSer cmps 21925 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-struct 17185 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-tset 17317 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-psr 21930 | 
| This theorem is referenced by: psrgrpOLD 21978 psr0 21979 | 
| Copyright terms: Public domain | W3C validator |