Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvlid Structured version   Visualization version   GIF version

Theorem mndvlid 21100
 Description: Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
mndvlid.z 0 = (0g𝑀)
Assertion
Ref Expression
mndvlid ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋)

Proof of Theorem mndvlid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8442 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 499 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 485 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8443 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 485 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
7 mndvlid.z . . . 4 0 = (0g𝑀)
86, 7mndidcl 17997 . . 3 (𝑀 ∈ Mnd → 0𝐵)
98adantr 484 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 mndvcl.p . . . 4 + = (+g𝑀)
116, 10, 7mndlid 18002 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
1211adantlr 714 . 2 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
133, 5, 9, 12caofid0l 7440 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  Vcvv 3409  {csn 4525   × cxp 5525  ⟶wf 6335  ‘cfv 6339  (class class class)co 7155   ∘f cof 7408   ↑m cmap 8421  Basecbs 16546  +gcplusg 16628  0gc0g 16776  Mndcmnd 17982 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7410  df-1st 7698  df-2nd 7699  df-map 8423  df-0g 16778  df-mgm 17923  df-sgrp 17972  df-mnd 17983 This theorem is referenced by:  mendring  40537
 Copyright terms: Public domain W3C validator