![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndvlid | Structured version Visualization version GIF version |
Description: Tuple-wise left identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
mndvlid.z | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
mndvlid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8827 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 496 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 8828 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 482 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
8 | 6, 7 | mndidcl 18619 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
11 | 6, 10, 7 | mndlid 18624 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
12 | 11 | adantlr 713 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐵) → ( 0 + 𝑥) = 𝑥) |
13 | 3, 5, 9, 12 | caofid0l 7685 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → ((𝐼 × { 0 }) ∘f + 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {csn 4623 × cxp 5668 ⟶wf 6529 ‘cfv 6533 (class class class)co 7394 ∘f cof 7652 ↑m cmap 8805 Basecbs 17128 +gcplusg 17181 0gc0g 17369 Mndcmnd 18604 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5568 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7654 df-1st 7959 df-2nd 7960 df-map 8807 df-0g 17371 df-mgm 18545 df-sgrp 18594 df-mnd 18605 |
This theorem is referenced by: mendring 41769 |
Copyright terms: Public domain | W3C validator |