Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version |
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfladd0l.v | ⊢ 𝑉 = (Base‘𝑊) |
lfladd0l.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfladd0l.p | ⊢ + = (+g‘𝑅) |
lfladd0l.o | ⊢ 0 = (0g‘𝑅) |
lfladd0l.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfladd0l.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfladd0l.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lfladd0l | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladd0l.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6823 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfladd0l.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lfladd0l.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lfladd0l.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2737 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lfladd0l.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 37289 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lfladd0l.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6823 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | 6 | lmodring 20202 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
15 | ringgrp 19855 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
16 | 4, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
17 | lfladd0l.p | . . . 4 ⊢ + = (+g‘𝑅) | |
18 | 7, 17, 11 | grplid 18676 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
19 | 16, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
20 | 3, 10, 13, 19 | caofid0l 7602 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {csn 4569 × cxp 5603 ⟶wf 6459 ‘cfv 6463 (class class class)co 7313 ∘f cof 7569 Basecbs 16979 +gcplusg 17029 Scalarcsca 17032 0gc0g 17217 Grpcgrp 18644 Ringcrg 19850 LModclmod 20194 LFnlclfn 37283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-riota 7270 df-ov 7316 df-oprab 7317 df-mpo 7318 df-of 7571 df-map 8663 df-0g 17219 df-mgm 18393 df-sgrp 18442 df-mnd 18453 df-grp 18647 df-ring 19852 df-lmod 20196 df-lfl 37284 |
This theorem is referenced by: ldualgrplem 37371 ldual0v 37376 |
Copyright terms: Public domain | W3C validator |