| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version | ||
| Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
| Ref | Expression |
|---|---|
| lfladd0l.v | ⊢ 𝑉 = (Base‘𝑊) |
| lfladd0l.r | ⊢ 𝑅 = (Scalar‘𝑊) |
| lfladd0l.p | ⊢ + = (+g‘𝑅) |
| lfladd0l.o | ⊢ 0 = (0g‘𝑅) |
| lfladd0l.f | ⊢ 𝐹 = (LFnl‘𝑊) |
| lfladd0l.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| lfladd0l.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| Ref | Expression |
|---|---|
| lfladd0l | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfladd0l.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 2 | 1 | fvexi 6899 | . . 3 ⊢ 𝑉 ∈ V |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
| 4 | lfladd0l.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 5 | lfladd0l.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 6 | lfladd0l.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
| 7 | eqid 2734 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 8 | lfladd0l.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
| 9 | 6, 7, 1, 8 | lflf 38998 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
| 10 | 4, 5, 9 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
| 11 | lfladd0l.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 12 | 11 | fvexi 6899 | . . 3 ⊢ 0 ∈ V |
| 13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
| 14 | 6 | lmodring 20833 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
| 15 | ringgrp 20202 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 16 | 4, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 17 | lfladd0l.p | . . . 4 ⊢ + = (+g‘𝑅) | |
| 18 | 7, 17, 11 | grplid 18953 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
| 19 | 16, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
| 20 | 3, 10, 13, 19 | caofid0l 7711 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 × cxp 5663 ⟶wf 6536 ‘cfv 6540 (class class class)co 7412 ∘f cof 7676 Basecbs 17228 +gcplusg 17272 Scalarcsca 17275 0gc0g 17454 Grpcgrp 18919 Ringcrg 20197 LModclmod 20825 LFnlclfn 38992 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-map 8849 df-0g 17456 df-mgm 18621 df-sgrp 18700 df-mnd 18716 df-grp 18922 df-ring 20199 df-lmod 20827 df-lfl 38993 |
| This theorem is referenced by: ldualgrplem 39080 ldual0v 39085 |
| Copyright terms: Public domain | W3C validator |