![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version |
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfladd0l.v | β’ π = (Baseβπ) |
lfladd0l.r | β’ π = (Scalarβπ) |
lfladd0l.p | β’ + = (+gβπ ) |
lfladd0l.o | β’ 0 = (0gβπ ) |
lfladd0l.f | β’ πΉ = (LFnlβπ) |
lfladd0l.w | β’ (π β π β LMod) |
lfladd0l.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
lfladd0l | β’ (π β ((π Γ { 0 }) βf + πΊ) = πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladd0l.v | . . . 4 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6899 | . . 3 β’ π β V |
3 | 2 | a1i 11 | . 2 β’ (π β π β V) |
4 | lfladd0l.w | . . 3 β’ (π β π β LMod) | |
5 | lfladd0l.g | . . 3 β’ (π β πΊ β πΉ) | |
6 | lfladd0l.r | . . . 4 β’ π = (Scalarβπ) | |
7 | eqid 2726 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
8 | lfladd0l.f | . . . 4 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 38446 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆ(Baseβπ )) |
10 | 4, 5, 9 | syl2anc 583 | . 2 β’ (π β πΊ:πβΆ(Baseβπ )) |
11 | lfladd0l.o | . . . 4 β’ 0 = (0gβπ ) | |
12 | 11 | fvexi 6899 | . . 3 β’ 0 β V |
13 | 12 | a1i 11 | . 2 β’ (π β 0 β V) |
14 | 6 | lmodring 20714 | . . . 4 β’ (π β LMod β π β Ring) |
15 | ringgrp 20143 | . . . 4 β’ (π β Ring β π β Grp) | |
16 | 4, 14, 15 | 3syl 18 | . . 3 β’ (π β π β Grp) |
17 | lfladd0l.p | . . . 4 β’ + = (+gβπ ) | |
18 | 7, 17, 11 | grplid 18897 | . . 3 β’ ((π β Grp β§ π β (Baseβπ )) β ( 0 + π) = π) |
19 | 16, 18 | sylan 579 | . 2 β’ ((π β§ π β (Baseβπ )) β ( 0 + π) = π) |
20 | 3, 10, 13, 19 | caofid0l 7698 | 1 β’ (π β ((π Γ { 0 }) βf + πΊ) = πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 {csn 4623 Γ cxp 5667 βΆwf 6533 βcfv 6537 (class class class)co 7405 βf cof 7665 Basecbs 17153 +gcplusg 17206 Scalarcsca 17209 0gc0g 17394 Grpcgrp 18863 Ringcrg 20138 LModclmod 20706 LFnlclfn 38440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-map 8824 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18866 df-ring 20140 df-lmod 20708 df-lfl 38441 |
This theorem is referenced by: ldualgrplem 38528 ldual0v 38533 |
Copyright terms: Public domain | W3C validator |