![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version |
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfladd0l.v | β’ π = (Baseβπ) |
lfladd0l.r | β’ π = (Scalarβπ) |
lfladd0l.p | β’ + = (+gβπ ) |
lfladd0l.o | β’ 0 = (0gβπ ) |
lfladd0l.f | β’ πΉ = (LFnlβπ) |
lfladd0l.w | β’ (π β π β LMod) |
lfladd0l.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
lfladd0l | β’ (π β ((π Γ { 0 }) βf + πΊ) = πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladd0l.v | . . . 4 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6905 | . . 3 β’ π β V |
3 | 2 | a1i 11 | . 2 β’ (π β π β V) |
4 | lfladd0l.w | . . 3 β’ (π β π β LMod) | |
5 | lfladd0l.g | . . 3 β’ (π β πΊ β πΉ) | |
6 | lfladd0l.r | . . . 4 β’ π = (Scalarβπ) | |
7 | eqid 2732 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
8 | lfladd0l.f | . . . 4 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 37928 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆ(Baseβπ )) |
10 | 4, 5, 9 | syl2anc 584 | . 2 β’ (π β πΊ:πβΆ(Baseβπ )) |
11 | lfladd0l.o | . . . 4 β’ 0 = (0gβπ ) | |
12 | 11 | fvexi 6905 | . . 3 β’ 0 β V |
13 | 12 | a1i 11 | . 2 β’ (π β 0 β V) |
14 | 6 | lmodring 20478 | . . . 4 β’ (π β LMod β π β Ring) |
15 | ringgrp 20060 | . . . 4 β’ (π β Ring β π β Grp) | |
16 | 4, 14, 15 | 3syl 18 | . . 3 β’ (π β π β Grp) |
17 | lfladd0l.p | . . . 4 β’ + = (+gβπ ) | |
18 | 7, 17, 11 | grplid 18851 | . . 3 β’ ((π β Grp β§ π β (Baseβπ )) β ( 0 + π) = π) |
19 | 16, 18 | sylan 580 | . 2 β’ ((π β§ π β (Baseβπ )) β ( 0 + π) = π) |
20 | 3, 10, 13, 19 | caofid0l 7700 | 1 β’ (π β ((π Γ { 0 }) βf + πΊ) = πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7408 βf cof 7667 Basecbs 17143 +gcplusg 17196 Scalarcsca 17199 0gc0g 17384 Grpcgrp 18818 Ringcrg 20055 LModclmod 20470 LFnlclfn 37922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 df-map 8821 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-ring 20057 df-lmod 20472 df-lfl 37923 |
This theorem is referenced by: ldualgrplem 38010 ldual0v 38015 |
Copyright terms: Public domain | W3C validator |