Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd0l Structured version   Visualization version   GIF version

Theorem lfladd0l 39067
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfladd0l.v 𝑉 = (Base‘𝑊)
lfladd0l.r 𝑅 = (Scalar‘𝑊)
lfladd0l.p + = (+g𝑅)
lfladd0l.o 0 = (0g𝑅)
lfladd0l.f 𝐹 = (LFnl‘𝑊)
lfladd0l.w (𝜑𝑊 ∈ LMod)
lfladd0l.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfladd0l (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)

Proof of Theorem lfladd0l
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfladd0l.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6872 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfladd0l.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfladd0l.g . . 3 (𝜑𝐺𝐹)
6 lfladd0l.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2729 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lfladd0l.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39056 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lfladd0l.o . . . 4 0 = (0g𝑅)
1211fvexi 6872 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
146lmodring 20774 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
15 ringgrp 20147 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
164, 14, 153syl 18 . . 3 (𝜑𝑅 ∈ Grp)
17 lfladd0l.p . . . 4 + = (+g𝑅)
187, 17, 11grplid 18899 . . 3 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
1916, 18sylan 580 . 2 ((𝜑𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
203, 10, 13, 19caofid0l 7686 1 (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223  0gc0g 17402  Grpcgrp 18865  Ringcrg 20142  LModclmod 20766  LFnlclfn 39050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-map 8801  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-ring 20144  df-lmod 20768  df-lfl 39051
This theorem is referenced by:  ldualgrplem  39138  ldual0v  39143
  Copyright terms: Public domain W3C validator