![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version |
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfladd0l.v | ⊢ 𝑉 = (Base‘𝑊) |
lfladd0l.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfladd0l.p | ⊢ + = (+g‘𝑅) |
lfladd0l.o | ⊢ 0 = (0g‘𝑅) |
lfladd0l.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfladd0l.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfladd0l.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lfladd0l | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladd0l.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6933 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfladd0l.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lfladd0l.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lfladd0l.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2734 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lfladd0l.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 38968 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 583 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lfladd0l.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6933 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | 6 | lmodring 20883 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
15 | ringgrp 20260 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
16 | 4, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
17 | lfladd0l.p | . . . 4 ⊢ + = (+g‘𝑅) | |
18 | 7, 17, 11 | grplid 19002 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
19 | 16, 18 | sylan 579 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
20 | 3, 10, 13, 19 | caofid0l 7742 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2103 Vcvv 3482 {csn 4648 × cxp 5697 ⟶wf 6568 ‘cfv 6572 (class class class)co 7445 ∘f cof 7708 Basecbs 17253 +gcplusg 17306 Scalarcsca 17309 0gc0g 17494 Grpcgrp 18968 Ringcrg 20255 LModclmod 20875 LFnlclfn 38962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-10 2136 ax-11 2153 ax-12 2173 ax-ext 2705 ax-rep 5306 ax-sep 5320 ax-nul 5327 ax-pow 5386 ax-pr 5450 ax-un 7766 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2890 df-ne 2943 df-ral 3064 df-rex 3073 df-rmo 3383 df-reu 3384 df-rab 3439 df-v 3484 df-sbc 3799 df-csb 3916 df-dif 3973 df-un 3975 df-in 3977 df-ss 3987 df-nul 4348 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5021 df-br 5170 df-opab 5232 df-mpt 5253 df-id 5597 df-xp 5705 df-rel 5706 df-cnv 5707 df-co 5708 df-dm 5709 df-rn 5710 df-res 5711 df-ima 5712 df-iota 6524 df-fun 6574 df-fn 6575 df-f 6576 df-f1 6577 df-fo 6578 df-f1o 6579 df-fv 6580 df-riota 7401 df-ov 7448 df-oprab 7449 df-mpo 7450 df-of 7710 df-map 8882 df-0g 17496 df-mgm 18673 df-sgrp 18752 df-mnd 18768 df-grp 18971 df-ring 20257 df-lmod 20877 df-lfl 38963 |
This theorem is referenced by: ldualgrplem 39050 ldual0v 39055 |
Copyright terms: Public domain | W3C validator |