Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd0l Structured version   Visualization version   GIF version

Theorem lfladd0l 37300
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfladd0l.v 𝑉 = (Base‘𝑊)
lfladd0l.r 𝑅 = (Scalar‘𝑊)
lfladd0l.p + = (+g𝑅)
lfladd0l.o 0 = (0g𝑅)
lfladd0l.f 𝐹 = (LFnl‘𝑊)
lfladd0l.w (𝜑𝑊 ∈ LMod)
lfladd0l.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfladd0l (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)

Proof of Theorem lfladd0l
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfladd0l.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6823 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfladd0l.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfladd0l.g . . 3 (𝜑𝐺𝐹)
6 lfladd0l.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lfladd0l.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 37289 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lfladd0l.o . . . 4 0 = (0g𝑅)
1211fvexi 6823 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
146lmodring 20202 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
15 ringgrp 19855 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
164, 14, 153syl 18 . . 3 (𝜑𝑅 ∈ Grp)
17 lfladd0l.p . . . 4 + = (+g𝑅)
187, 17, 11grplid 18676 . . 3 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
1916, 18sylan 580 . 2 ((𝜑𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
203, 10, 13, 19caofid0l 7602 1 (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3441  {csn 4569   × cxp 5603  wf 6459  cfv 6463  (class class class)co 7313  f cof 7569  Basecbs 16979  +gcplusg 17029  Scalarcsca 17032  0gc0g 17217  Grpcgrp 18644  Ringcrg 19850  LModclmod 20194  LFnlclfn 37283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5222  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-iun 4937  df-br 5086  df-opab 5148  df-mpt 5169  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-f1 6468  df-fo 6469  df-f1o 6470  df-fv 6471  df-riota 7270  df-ov 7316  df-oprab 7317  df-mpo 7318  df-of 7571  df-map 8663  df-0g 17219  df-mgm 18393  df-sgrp 18442  df-mnd 18453  df-grp 18647  df-ring 19852  df-lmod 20196  df-lfl 37284
This theorem is referenced by:  ldualgrplem  37371  ldual0v  37376
  Copyright terms: Public domain W3C validator