![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfladd0l | Structured version Visualization version GIF version |
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfladd0l.v | ⊢ 𝑉 = (Base‘𝑊) |
lfladd0l.r | ⊢ 𝑅 = (Scalar‘𝑊) |
lfladd0l.p | ⊢ + = (+g‘𝑅) |
lfladd0l.o | ⊢ 0 = (0g‘𝑅) |
lfladd0l.f | ⊢ 𝐹 = (LFnl‘𝑊) |
lfladd0l.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lfladd0l.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Ref | Expression |
---|---|
lfladd0l | ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfladd0l.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
2 | 1 | fvexi 6910 | . . 3 ⊢ 𝑉 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝑉 ∈ V) |
4 | lfladd0l.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lfladd0l.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
6 | lfladd0l.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑊) | |
7 | eqid 2725 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | lfladd0l.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
9 | 6, 7, 1, 8 | lflf 38665 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝐺 ∈ 𝐹) → 𝐺:𝑉⟶(Base‘𝑅)) |
10 | 4, 5, 9 | syl2anc 582 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑅)) |
11 | lfladd0l.o | . . . 4 ⊢ 0 = (0g‘𝑅) | |
12 | 11 | fvexi 6910 | . . 3 ⊢ 0 ∈ V |
13 | 12 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
14 | 6 | lmodring 20763 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝑅 ∈ Ring) |
15 | ringgrp 20190 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
16 | 4, 14, 15 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Grp) |
17 | lfladd0l.p | . . . 4 ⊢ + = (+g‘𝑅) | |
18 | 7, 17, 11 | grplid 18932 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
19 | 16, 18 | sylan 578 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘) |
20 | 3, 10, 13, 19 | caofid0l 7717 | 1 ⊢ (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 {csn 4630 × cxp 5676 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ∘f cof 7683 Basecbs 17183 +gcplusg 17236 Scalarcsca 17239 0gc0g 17424 Grpcgrp 18898 Ringcrg 20185 LModclmod 20755 LFnlclfn 38659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-map 8847 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-ring 20187 df-lmod 20757 df-lfl 38660 |
This theorem is referenced by: ldualgrplem 38747 ldual0v 38752 |
Copyright terms: Public domain | W3C validator |