Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladd0l Structured version   Visualization version   GIF version

Theorem lfladd0l 39009
Description: Functional addition with the zero functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfladd0l.v 𝑉 = (Base‘𝑊)
lfladd0l.r 𝑅 = (Scalar‘𝑊)
lfladd0l.p + = (+g𝑅)
lfladd0l.o 0 = (0g𝑅)
lfladd0l.f 𝐹 = (LFnl‘𝑊)
lfladd0l.w (𝜑𝑊 ∈ LMod)
lfladd0l.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfladd0l (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)

Proof of Theorem lfladd0l
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfladd0l.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6899 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfladd0l.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfladd0l.g . . 3 (𝜑𝐺𝐹)
6 lfladd0l.r . . . 4 𝑅 = (Scalar‘𝑊)
7 eqid 2734 . . . 4 (Base‘𝑅) = (Base‘𝑅)
8 lfladd0l.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 38998 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉⟶(Base‘𝑅))
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉⟶(Base‘𝑅))
11 lfladd0l.o . . . 4 0 = (0g𝑅)
1211fvexi 6899 . . 3 0 ∈ V
1312a1i 11 . 2 (𝜑0 ∈ V)
146lmodring 20833 . . . 4 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
15 ringgrp 20202 . . . 4 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
164, 14, 153syl 18 . . 3 (𝜑𝑅 ∈ Grp)
17 lfladd0l.p . . . 4 + = (+g𝑅)
187, 17, 11grplid 18953 . . 3 ((𝑅 ∈ Grp ∧ 𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
1916, 18sylan 580 . 2 ((𝜑𝑘 ∈ (Base‘𝑅)) → ( 0 + 𝑘) = 𝑘)
203, 10, 13, 19caofid0l 7711 1 (𝜑 → ((𝑉 × { 0 }) ∘f + 𝐺) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3463  {csn 4606   × cxp 5663  wf 6536  cfv 6540  (class class class)co 7412  f cof 7676  Basecbs 17228  +gcplusg 17272  Scalarcsca 17275  0gc0g 17454  Grpcgrp 18919  Ringcrg 20197  LModclmod 20825  LFnlclfn 38992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-map 8849  df-0g 17456  df-mgm 18621  df-sgrp 18700  df-mnd 18716  df-grp 18922  df-ring 20199  df-lmod 20827  df-lfl 38993
This theorem is referenced by:  ldualgrplem  39080  ldual0v  39085
  Copyright terms: Public domain W3C validator