![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndvrid | Structured version Visualization version GIF version |
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
mndvlid.z | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
mndvrid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8838 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 497 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 8839 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
8 | 6, 7 | mndidcl 18636 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
9 | 8 | adantr 482 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
11 | 6, 10, 7 | mndrid 18642 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
12 | 11 | adantlr 714 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
13 | 3, 5, 9, 12 | caofid0r 7697 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4627 × cxp 5673 ⟶wf 6536 ‘cfv 6540 (class class class)co 7404 ∘f cof 7663 ↑m cmap 8816 Basecbs 17140 +gcplusg 17193 0gc0g 17381 Mndcmnd 18621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7665 df-1st 7970 df-2nd 7971 df-map 8818 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |