![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndvrid | Structured version Visualization version GIF version |
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
mndvlid.z | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
mndvrid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8793 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 497 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
3 | 2 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
4 | elmapi 8794 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
5 | 4 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
8 | 6, 7 | mndidcl 18578 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
9 | 8 | adantr 482 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
11 | 6, 10, 7 | mndrid 18584 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
12 | 11 | adantlr 714 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
13 | 3, 5, 9, 12 | caofid0r 7654 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3448 {csn 4591 × cxp 5636 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 ∘f cof 7620 ↑m cmap 8772 Basecbs 17090 +gcplusg 17140 0gc0g 17328 Mndcmnd 18563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-of 7622 df-1st 7926 df-2nd 7927 df-map 8774 df-0g 17330 df-mgm 18504 df-sgrp 18553 df-mnd 18564 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |