| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndvrid | Structured version Visualization version GIF version | ||
| Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mndvcl.p | ⊢ + = (+g‘𝑀) |
| mndvlid.z | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| mndvrid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8821 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 4 | elmapi 8822 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
| 8 | 6, 7 | mndidcl 18676 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
| 10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
| 11 | 6, 10, 7 | mndrid 18682 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 12 | 11 | adantlr 715 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 13 | 3, 5, 9, 12 | caofid0r 7687 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 × cxp 5636 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 ↑m cmap 8799 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Mndcmnd 18661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-1st 7968 df-2nd 7969 df-map 8801 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |