MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvrid Structured version   Visualization version   GIF version

Theorem mndvrid 18814
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
mndvlid.z 0 = (0g𝑀)
Assertion
Ref Expression
mndvrid ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝐼 × { 0 })) = 𝑋)

Proof of Theorem mndvrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8889 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 495 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 481 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8890 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 481 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
7 mndvlid.z . . . 4 0 = (0g𝑀)
86, 7mndidcl 18763 . . 3 (𝑀 ∈ Mnd → 0𝐵)
98adantr 480 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 mndvcl.p . . . 4 + = (+g𝑀)
116, 10, 7mndrid 18769 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1211adantlr 715 . 2 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
133, 5, 9, 12caofid0r 7732 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝐼 × { 0 })) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3479  {csn 4625   × cxp 5682  wf 6556  cfv 6560  (class class class)co 7432  f cof 7696  m cmap 8867  Basecbs 17248  +gcplusg 17298  0gc0g 17485  Mndcmnd 18748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-1st 8015  df-2nd 8016  df-map 8869  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator