MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvrid Structured version   Visualization version   GIF version

Theorem mndvrid 18727
Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
mndvlid.z 0 = (0g𝑀)
Assertion
Ref Expression
mndvrid ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝐼 × { 0 })) = 𝑋)

Proof of Theorem mndvrid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elmapex 8821 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 495 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
32adantl 481 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
4 elmapi 8822 . . 3 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
54adantl 481 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
6 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
7 mndvlid.z . . . 4 0 = (0g𝑀)
86, 7mndidcl 18676 . . 3 (𝑀 ∈ Mnd → 0𝐵)
98adantr 480 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → 0𝐵)
10 mndvcl.p . . . 4 + = (+g𝑀)
116, 10, 7mndrid 18682 . . 3 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
1211adantlr 715 . 2 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) ∧ 𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
133, 5, 9, 12caofid0r 7687 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵m 𝐼)) → (𝑋f + (𝐼 × { 0 })) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   × cxp 5636  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651  m cmap 8799  Basecbs 17179  +gcplusg 17220  0gc0g 17402  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-1st 7968  df-2nd 7969  df-map 8801  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator