| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndvrid | Structured version Visualization version GIF version | ||
| Description: Tuple-wise right identity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mndvcl.p | ⊢ + = (+g‘𝑀) |
| mndvlid.z | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| mndvrid | ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8870 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 2 | 1 | simprd 495 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 4 | elmapi 8871 | . . 3 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 6 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 7 | mndvlid.z | . . . 4 ⊢ 0 = (0g‘𝑀) | |
| 8 | 6, 7 | mndidcl 18731 | . . 3 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → 0 ∈ 𝐵) |
| 10 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
| 11 | 6, 10, 7 | mndrid 18737 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 12 | 11 | adantlr 715 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) ∧ 𝑥 ∈ 𝐵) → (𝑥 + 0 ) = 𝑥) |
| 13 | 3, 5, 9, 12 | caofid0r 7713 | 1 ⊢ ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵 ↑m 𝐼)) → (𝑋 ∘f + (𝐼 × { 0 })) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 {csn 4606 × cxp 5663 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 ↑m cmap 8848 Basecbs 17229 +gcplusg 17273 0gc0g 17455 Mndcmnd 18716 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-1st 7996 df-2nd 7997 df-map 8850 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |