Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1sc Structured version   Visualization version   GIF version

Theorem lfl1sc 39026
Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfl1sc.v 𝑉 = (Base‘𝑊)
lfl1sc.d 𝐷 = (Scalar‘𝑊)
lfl1sc.f 𝐹 = (LFnl‘𝑊)
lfl1sc.k 𝐾 = (Base‘𝐷)
lfl1sc.t · = (.r𝐷)
lfl1sc.i 1 = (1r𝐷)
lfl1sc.w (𝜑𝑊 ∈ LMod)
lfl1sc.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1sc (𝜑 → (𝐺f · (𝑉 × { 1 })) = 𝐺)

Proof of Theorem lfl1sc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfl1sc.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6901 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfl1sc.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfl1sc.g . . 3 (𝜑𝐺𝐹)
6 lfl1sc.d . . . 4 𝐷 = (Scalar‘𝑊)
7 lfl1sc.k . . . 4 𝐾 = (Base‘𝐷)
8 lfl1sc.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 39005 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉𝐾)
11 lfl1sc.i . . . 4 1 = (1r𝐷)
1211fvexi 6901 . . 3 1 ∈ V
1312a1i 11 . 2 (𝜑1 ∈ V)
146lmodring 20839 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
154, 14syl 17 . . 3 (𝜑𝐷 ∈ Ring)
16 lfl1sc.t . . . 4 · = (.r𝐷)
177, 16, 11ringridm 20240 . . 3 ((𝐷 ∈ Ring ∧ 𝑘𝐾) → (𝑘 · 1 ) = 𝑘)
1815, 17sylan 580 . 2 ((𝜑𝑘𝐾) → (𝑘 · 1 ) = 𝑘)
193, 10, 13, 18caofid0r 7714 1 (𝜑 → (𝐺f · (𝑉 × { 1 })) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3464  {csn 4608   × cxp 5665  wf 6538  cfv 6542  (class class class)co 7414  f cof 7678  Basecbs 17230  .rcmulr 17278  Scalarcsca 17280  1rcur 20151  Ringcrg 20203  LModclmod 20831  LFnlclfn 38999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17290  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-mgp 20111  df-ur 20152  df-ring 20205  df-lmod 20833  df-lfl 39000
This theorem is referenced by:  lduallmodlem  39094
  Copyright terms: Public domain W3C validator