Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1sc Structured version   Visualization version   GIF version

Theorem lfl1sc 37098
Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.)
Hypotheses
Ref Expression
lfl1sc.v 𝑉 = (Base‘𝑊)
lfl1sc.d 𝐷 = (Scalar‘𝑊)
lfl1sc.f 𝐹 = (LFnl‘𝑊)
lfl1sc.k 𝐾 = (Base‘𝐷)
lfl1sc.t · = (.r𝐷)
lfl1sc.i 1 = (1r𝐷)
lfl1sc.w (𝜑𝑊 ∈ LMod)
lfl1sc.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lfl1sc (𝜑 → (𝐺f · (𝑉 × { 1 })) = 𝐺)

Proof of Theorem lfl1sc
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lfl1sc.v . . . 4 𝑉 = (Base‘𝑊)
21fvexi 6788 . . 3 𝑉 ∈ V
32a1i 11 . 2 (𝜑𝑉 ∈ V)
4 lfl1sc.w . . 3 (𝜑𝑊 ∈ LMod)
5 lfl1sc.g . . 3 (𝜑𝐺𝐹)
6 lfl1sc.d . . . 4 𝐷 = (Scalar‘𝑊)
7 lfl1sc.k . . . 4 𝐾 = (Base‘𝐷)
8 lfl1sc.f . . . 4 𝐹 = (LFnl‘𝑊)
96, 7, 1, 8lflf 37077 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺:𝑉𝐾)
104, 5, 9syl2anc 584 . 2 (𝜑𝐺:𝑉𝐾)
11 lfl1sc.i . . . 4 1 = (1r𝐷)
1211fvexi 6788 . . 3 1 ∈ V
1312a1i 11 . 2 (𝜑1 ∈ V)
146lmodring 20131 . . . 4 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
154, 14syl 17 . . 3 (𝜑𝐷 ∈ Ring)
16 lfl1sc.t . . . 4 · = (.r𝐷)
177, 16, 11ringridm 19811 . . 3 ((𝐷 ∈ Ring ∧ 𝑘𝐾) → (𝑘 · 1 ) = 𝑘)
1815, 17sylan 580 . 2 ((𝜑𝑘𝐾) → (𝑘 · 1 ) = 𝑘)
193, 10, 13, 18caofid0r 7565 1 (𝜑 → (𝐺f · (𝑉 × { 1 })) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  Basecbs 16912  .rcmulr 16963  Scalarcsca 16965  1rcur 19737  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  lduallmodlem  37166
  Copyright terms: Public domain W3C validator