![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lfl1sc | Structured version Visualization version GIF version |
Description: The (right vector space) scalar product of a functional with one is the functional. (Contributed by NM, 21-Oct-2014.) |
Ref | Expression |
---|---|
lfl1sc.v | β’ π = (Baseβπ) |
lfl1sc.d | β’ π· = (Scalarβπ) |
lfl1sc.f | β’ πΉ = (LFnlβπ) |
lfl1sc.k | β’ πΎ = (Baseβπ·) |
lfl1sc.t | β’ Β· = (.rβπ·) |
lfl1sc.i | β’ 1 = (1rβπ·) |
lfl1sc.w | β’ (π β π β LMod) |
lfl1sc.g | β’ (π β πΊ β πΉ) |
Ref | Expression |
---|---|
lfl1sc | β’ (π β (πΊ βf Β· (π Γ { 1 })) = πΊ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lfl1sc.v | . . . 4 β’ π = (Baseβπ) | |
2 | 1 | fvexi 6905 | . . 3 β’ π β V |
3 | 2 | a1i 11 | . 2 β’ (π β π β V) |
4 | lfl1sc.w | . . 3 β’ (π β π β LMod) | |
5 | lfl1sc.g | . . 3 β’ (π β πΊ β πΉ) | |
6 | lfl1sc.d | . . . 4 β’ π· = (Scalarβπ) | |
7 | lfl1sc.k | . . . 4 β’ πΎ = (Baseβπ·) | |
8 | lfl1sc.f | . . . 4 β’ πΉ = (LFnlβπ) | |
9 | 6, 7, 1, 8 | lflf 38524 | . . 3 β’ ((π β LMod β§ πΊ β πΉ) β πΊ:πβΆπΎ) |
10 | 4, 5, 9 | syl2anc 583 | . 2 β’ (π β πΊ:πβΆπΎ) |
11 | lfl1sc.i | . . . 4 β’ 1 = (1rβπ·) | |
12 | 11 | fvexi 6905 | . . 3 β’ 1 β V |
13 | 12 | a1i 11 | . 2 β’ (π β 1 β V) |
14 | 6 | lmodring 20744 | . . . 4 β’ (π β LMod β π· β Ring) |
15 | 4, 14 | syl 17 | . . 3 β’ (π β π· β Ring) |
16 | lfl1sc.t | . . . 4 β’ Β· = (.rβπ·) | |
17 | 7, 16, 11 | ringridm 20199 | . . 3 β’ ((π· β Ring β§ π β πΎ) β (π Β· 1 ) = π) |
18 | 15, 17 | sylan 579 | . 2 β’ ((π β§ π β πΎ) β (π Β· 1 ) = π) |
19 | 3, 10, 13, 18 | caofid0r 7711 | 1 β’ (π β (πΊ βf Β· (π Γ { 1 })) = πΊ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 Vcvv 3469 {csn 4624 Γ cxp 5670 βΆwf 6538 βcfv 6542 (class class class)co 7414 βf cof 7677 Basecbs 17173 .rcmulr 17227 Scalarcsca 17229 1rcur 20114 Ringcrg 20166 LModclmod 20736 LFnlclfn 38518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-nn 12237 df-2 12299 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-plusg 17239 df-0g 17416 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mgp 20068 df-ur 20115 df-ring 20168 df-lmod 20738 df-lfl 38519 |
This theorem is referenced by: lduallmodlem 38613 |
Copyright terms: Public domain | W3C validator |