MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil3 Structured version   Visualization version   GIF version

Theorem iscfil3 25307
Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
iscfil3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝑟,𝐹   𝑋,𝑟,𝑥   𝐷,𝑟,𝑥

Proof of Theorem iscfil3
Dummy variables 𝑢 𝑠 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilfil 25301 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2 cfil3i 25303 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
323expa 1119 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
43ralrimiva 3146 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
51, 4jca 511 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))
6 simprl 771 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
7 rphalfcl 13062 . . . . . . . 8 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
87adantl 481 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9 oveq2 7439 . . . . . . . . . 10 (𝑟 = (𝑠 / 2) → (𝑥(ball‘𝐷)𝑟) = (𝑥(ball‘𝐷)(𝑠 / 2)))
109eleq1d 2826 . . . . . . . . 9 (𝑟 = (𝑠 / 2) → ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1110rexbidv 3179 . . . . . . . 8 (𝑟 = (𝑠 / 2) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1211rspcv 3618 . . . . . . 7 ((𝑠 / 2) ∈ ℝ+ → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
14 simprr 773 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)
15 simp-4l 783 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
16 simplrl 777 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑥𝑋)
17 simpllr 776 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ+)
1817rpred 13077 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ)
19 simprl 771 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
20 blhalf 24415 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ ∧ 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
2115, 16, 18, 19, 20syl22anc 839 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
22 simprr 773 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
2321, 22sseldd 3984 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑢(ball‘𝐷)𝑠))
2417rpxrd 13078 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ*)
2517, 7syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ+)
2625rpxrd 13078 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ*)
27 blssm 24428 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑠 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2815, 16, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2928, 19sseldd 3984 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢𝑋)
3028, 22sseldd 3984 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣𝑋)
31 elbl2 24400 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠 ∈ ℝ*) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3215, 24, 29, 30, 31syl22anc 839 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3323, 32mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑢𝐷𝑣) < 𝑠)
3433ralrimivva 3202 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)
35 raleq 3323 . . . . . . . . . 10 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3635raleqbi1dv 3338 . . . . . . . . 9 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3736rspcev 3622 . . . . . . . 8 (((𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 ∧ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3814, 34, 37syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3938rexlimdvaa 3156 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4013, 39syld 47 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4140ralrimdva 3154 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4241impr 454 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
43 iscfil2 25300 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
4443adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
456, 42, 44mpbir2and 713 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (CauFil‘𝐷))
465, 45impbida 801 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  *cxr 11294   < clt 11295   / cdiv 11920  2c2 12321  +crp 13034  ∞Metcxmet 21349  ballcbl 21351  Filcfil 23853  CauFilccfil 25286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ico 13393  df-psmet 21356  df-xmet 21357  df-bl 21359  df-fbas 21361  df-fil 23854  df-cfil 25289
This theorem is referenced by:  equivcfil  25333  flimcfil  25348
  Copyright terms: Public domain W3C validator