MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil3 Structured version   Visualization version   GIF version

Theorem iscfil3 25180
Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
iscfil3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝑟,𝐹   𝑋,𝑟,𝑥   𝐷,𝑟,𝑥

Proof of Theorem iscfil3
Dummy variables 𝑢 𝑠 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilfil 25174 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2 cfil3i 25176 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
323expa 1118 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
43ralrimiva 3126 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
51, 4jca 511 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))
6 simprl 770 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
7 rphalfcl 12987 . . . . . . . 8 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
87adantl 481 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9 oveq2 7398 . . . . . . . . . 10 (𝑟 = (𝑠 / 2) → (𝑥(ball‘𝐷)𝑟) = (𝑥(ball‘𝐷)(𝑠 / 2)))
109eleq1d 2814 . . . . . . . . 9 (𝑟 = (𝑠 / 2) → ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1110rexbidv 3158 . . . . . . . 8 (𝑟 = (𝑠 / 2) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1211rspcv 3587 . . . . . . 7 ((𝑠 / 2) ∈ ℝ+ → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
14 simprr 772 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)
15 simp-4l 782 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
16 simplrl 776 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑥𝑋)
17 simpllr 775 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ+)
1817rpred 13002 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ)
19 simprl 770 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
20 blhalf 24300 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ ∧ 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
2115, 16, 18, 19, 20syl22anc 838 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
22 simprr 772 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
2321, 22sseldd 3950 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑢(ball‘𝐷)𝑠))
2417rpxrd 13003 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ*)
2517, 7syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ+)
2625rpxrd 13003 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ*)
27 blssm 24313 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑠 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2815, 16, 26, 27syl3anc 1373 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2928, 19sseldd 3950 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢𝑋)
3028, 22sseldd 3950 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣𝑋)
31 elbl2 24285 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠 ∈ ℝ*) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3215, 24, 29, 30, 31syl22anc 838 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3323, 32mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑢𝐷𝑣) < 𝑠)
3433ralrimivva 3181 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)
35 raleq 3298 . . . . . . . . . 10 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3635raleqbi1dv 3313 . . . . . . . . 9 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3736rspcev 3591 . . . . . . . 8 (((𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 ∧ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3814, 34, 37syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3938rexlimdvaa 3136 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4013, 39syld 47 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4140ralrimdva 3134 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4241impr 454 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
43 iscfil2 25173 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
4443adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
456, 42, 44mpbir2and 713 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (CauFil‘𝐷))
465, 45impbida 800 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  *cxr 11214   < clt 11215   / cdiv 11842  2c2 12248  +crp 12958  ∞Metcxmet 21256  ballcbl 21258  Filcfil 23739  CauFilccfil 25159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ico 13319  df-psmet 21263  df-xmet 21264  df-bl 21266  df-fbas 21268  df-fil 23740  df-cfil 25162
This theorem is referenced by:  equivcfil  25206  flimcfil  25221
  Copyright terms: Public domain W3C validator