| Step | Hyp | Ref
| Expression |
| 1 | | cfilfil 25301 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
| 2 | | cfil3i 25303 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
| 3 | 2 | 3expa 1119 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
| 4 | 3 | ralrimiva 3146 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
| 5 | 1, 4 | jca 511 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) |
| 6 | | simprl 771 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
| 7 | | rphalfcl 13062 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ+
→ (𝑠 / 2) ∈
ℝ+) |
| 8 | 7 | adantl 481 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈
ℝ+) |
| 9 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑠 / 2) → (𝑥(ball‘𝐷)𝑟) = (𝑥(ball‘𝐷)(𝑠 / 2))) |
| 10 | 9 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑟 = (𝑠 / 2) → ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
| 11 | 10 | rexbidv 3179 |
. . . . . . . 8
⊢ (𝑟 = (𝑠 / 2) → (∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
| 12 | 11 | rspcv 3618 |
. . . . . . 7
⊢ ((𝑠 / 2) ∈ ℝ+
→ (∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
| 13 | 8, 12 | syl 17 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
| 14 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹) |
| 15 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) |
| 16 | | simplrl 777 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑥 ∈ 𝑋) |
| 17 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ+) |
| 18 | 17 | rpred 13077 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ) |
| 19 | | simprl 771 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))) |
| 20 | | blhalf 24415 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑠 ∈ ℝ ∧ 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠)) |
| 21 | 15, 16, 18, 19, 20 | syl22anc 839 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠)) |
| 22 | | simprr 773 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))) |
| 23 | 21, 22 | sseldd 3984 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑢(ball‘𝐷)𝑠)) |
| 24 | 17 | rpxrd 13078 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ*) |
| 25 | 17, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈
ℝ+) |
| 26 | 25 | rpxrd 13078 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈
ℝ*) |
| 27 | | blssm 24428 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑠 / 2) ∈ ℝ*) →
(𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋) |
| 28 | 15, 16, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋) |
| 29 | 28, 19 | sseldd 3984 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ 𝑋) |
| 30 | 28, 22 | sseldd 3984 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ 𝑋) |
| 31 | | elbl2 24400 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠 ∈ ℝ*) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠)) |
| 32 | 15, 24, 29, 30, 31 | syl22anc 839 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠)) |
| 33 | 23, 32 | mpbid 232 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑢𝐷𝑣) < 𝑠) |
| 34 | 33 | ralrimivva 3202 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) |
| 35 | | raleq 3323 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)) |
| 36 | 35 | raleqbi1dv 3338 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)) |
| 37 | 36 | rspcev 3622 |
. . . . . . . 8
⊢ (((𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 ∧ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
| 38 | 14, 34, 37 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
| 39 | 38 | rexlimdvaa 3156 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
| 40 | 13, 39 | syld 47 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
| 41 | 40 | ralrimdva 3154 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
| 42 | 41 | impr 454 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
| 43 | | iscfil2 25300 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠))) |
| 44 | 43 | adantr 480 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠))) |
| 45 | 6, 42, 44 | mpbir2and 713 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
| 46 | 5, 45 | impbida 801 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))) |