Step | Hyp | Ref
| Expression |
1 | | cfilfil 24164 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋)) |
2 | | cfil3i 24166 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
3 | 2 | 3expa 1120 |
. . . 4
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑟 ∈ ℝ+) →
∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
4 | 3 | ralrimiva 3105 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹) |
5 | 1, 4 | jca 515 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) |
6 | | simprl 771 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
7 | | rphalfcl 12613 |
. . . . . . . 8
⊢ (𝑠 ∈ ℝ+
→ (𝑠 / 2) ∈
ℝ+) |
8 | 7 | adantl 485 |
. . . . . . 7
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈
ℝ+) |
9 | | oveq2 7221 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑠 / 2) → (𝑥(ball‘𝐷)𝑟) = (𝑥(ball‘𝐷)(𝑠 / 2))) |
10 | 9 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑟 = (𝑠 / 2) → ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
11 | 10 | rexbidv 3216 |
. . . . . . . 8
⊢ (𝑟 = (𝑠 / 2) → (∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
12 | 11 | rspcv 3532 |
. . . . . . 7
⊢ ((𝑠 / 2) ∈ ℝ+
→ (∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
13 | 8, 12 | syl 17 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) |
14 | | simprr 773 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹) |
15 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝐷 ∈ (∞Met‘𝑋)) |
16 | | simplrl 777 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑥 ∈ 𝑋) |
17 | | simpllr 776 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ+) |
18 | 17 | rpred 12628 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ) |
19 | | simprl 771 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))) |
20 | | blhalf 23303 |
. . . . . . . . . . . 12
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) ∧ (𝑠 ∈ ℝ ∧ 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠)) |
21 | 15, 16, 18, 19, 20 | syl22anc 839 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠)) |
22 | | simprr 773 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))) |
23 | 21, 22 | sseldd 3902 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑢(ball‘𝐷)𝑠)) |
24 | 17 | rpxrd 12629 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ*) |
25 | 17, 7 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈
ℝ+) |
26 | 25 | rpxrd 12629 |
. . . . . . . . . . . . 13
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈
ℝ*) |
27 | | blssm 23316 |
. . . . . . . . . . . . 13
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ (𝑠 / 2) ∈ ℝ*) →
(𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋) |
28 | 15, 16, 26, 27 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋) |
29 | 28, 19 | sseldd 3902 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ 𝑋) |
30 | 28, 22 | sseldd 3902 |
. . . . . . . . . . 11
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ 𝑋) |
31 | | elbl2 23288 |
. . . . . . . . . . 11
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠 ∈ ℝ*) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠)) |
32 | 15, 24, 29, 30, 31 | syl22anc 839 |
. . . . . . . . . 10
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠)) |
33 | 23, 32 | mpbid 235 |
. . . . . . . . 9
⊢
(((((𝐷 ∈
(∞Met‘𝑋) ∧
𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑢𝐷𝑣) < 𝑠) |
34 | 33 | ralrimivva 3112 |
. . . . . . . 8
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) |
35 | | raleq 3319 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)) |
36 | 35 | raleqbi1dv 3317 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)) |
37 | 36 | rspcev 3537 |
. . . . . . . 8
⊢ (((𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 ∧ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
38 | 14, 34, 37 | syl2anc 587 |
. . . . . . 7
⊢ ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥 ∈ 𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
39 | 38 | rexlimdvaa 3204 |
. . . . . 6
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
40 | 13, 39 | syld 47 |
. . . . 5
⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) →
(∀𝑟 ∈
ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
41 | 40 | ralrimdva 3110 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠)) |
42 | 41 | impr 458 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠) |
43 | | iscfil2 24163 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠))) |
44 | 43 | adantr 484 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+ ∃𝑦 ∈ 𝐹 ∀𝑢 ∈ 𝑦 ∀𝑣 ∈ 𝑦 (𝑢𝐷𝑣) < 𝑠))) |
45 | 6, 42, 44 | mpbir2and 713 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (CauFil‘𝐷)) |
46 | 5, 45 | impbida 801 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+ ∃𝑥 ∈ 𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))) |