MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscfil3 Structured version   Visualization version   GIF version

Theorem iscfil3 25320
Description: A filter is Cauchy iff it contains a ball of any chosen size. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
iscfil3 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Distinct variable groups:   𝑥,𝑟,𝐹   𝑋,𝑟,𝑥   𝐷,𝑟,𝑥

Proof of Theorem iscfil3
Dummy variables 𝑢 𝑠 𝑣 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfilfil 25314 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → 𝐹 ∈ (Fil‘𝑋))
2 cfil3i 25316 . . . . 5 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
323expa 1117 . . . 4 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) ∧ 𝑟 ∈ ℝ+) → ∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
43ralrimiva 3143 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)
51, 4jca 511 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (CauFil‘𝐷)) → (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹))
6 simprl 771 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
7 rphalfcl 13059 . . . . . . . 8 (𝑠 ∈ ℝ+ → (𝑠 / 2) ∈ ℝ+)
87adantl 481 . . . . . . 7 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (𝑠 / 2) ∈ ℝ+)
9 oveq2 7438 . . . . . . . . . 10 (𝑟 = (𝑠 / 2) → (𝑥(ball‘𝐷)𝑟) = (𝑥(ball‘𝐷)(𝑠 / 2)))
109eleq1d 2823 . . . . . . . . 9 (𝑟 = (𝑠 / 2) → ((𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1110rexbidv 3176 . . . . . . . 8 (𝑟 = (𝑠 / 2) → (∃𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 ↔ ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
1211rspcv 3617 . . . . . . 7 ((𝑠 / 2) ∈ ℝ+ → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
138, 12syl 17 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹))
14 simprr 773 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)
15 simp-4l 783 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝐷 ∈ (∞Met‘𝑋))
16 simplrl 777 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑥𝑋)
17 simpllr 776 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ+)
1817rpred 13074 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ)
19 simprl 771 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
20 blhalf 24430 . . . . . . . . . . . 12 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋) ∧ (𝑠 ∈ ℝ ∧ 𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
2115, 16, 18, 19, 20syl22anc 839 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ (𝑢(ball‘𝐷)𝑠))
22 simprr 773 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))
2321, 22sseldd 3995 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣 ∈ (𝑢(ball‘𝐷)𝑠))
2417rpxrd 13075 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑠 ∈ ℝ*)
2517, 7syl 17 . . . . . . . . . . . . . 14 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ+)
2625rpxrd 13075 . . . . . . . . . . . . 13 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑠 / 2) ∈ ℝ*)
27 blssm 24443 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥𝑋 ∧ (𝑠 / 2) ∈ ℝ*) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2815, 16, 26, 27syl3anc 1370 . . . . . . . . . . . 12 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑥(ball‘𝐷)(𝑠 / 2)) ⊆ 𝑋)
2928, 19sseldd 3995 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑢𝑋)
3028, 22sseldd 3995 . . . . . . . . . . 11 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → 𝑣𝑋)
31 elbl2 24415 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑠 ∈ ℝ*) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3215, 24, 29, 30, 31syl22anc 839 . . . . . . . . . 10 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑣 ∈ (𝑢(ball‘𝐷)𝑠) ↔ (𝑢𝐷𝑣) < 𝑠))
3323, 32mpbid 232 . . . . . . . . 9 (((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) ∧ (𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)) ∧ 𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2)))) → (𝑢𝐷𝑣) < 𝑠)
3433ralrimivva 3199 . . . . . . . 8 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠)
35 raleq 3320 . . . . . . . . . 10 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3635raleqbi1dv 3335 . . . . . . . . 9 (𝑦 = (𝑥(ball‘𝐷)(𝑠 / 2)) → (∀𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠 ↔ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠))
3736rspcev 3621 . . . . . . . 8 (((𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 ∧ ∀𝑢 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))∀𝑣 ∈ (𝑥(ball‘𝐷)(𝑠 / 2))(𝑢𝐷𝑣) < 𝑠) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3814, 34, 37syl2anc 584 . . . . . . 7 ((((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹)) → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
3938rexlimdvaa 3153 . . . . . 6 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∃𝑥𝑋 (𝑥(ball‘𝐷)(𝑠 / 2)) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4013, 39syld 47 . . . . 5 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) ∧ 𝑠 ∈ ℝ+) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∃𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4140ralrimdva 3151 . . . 4 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹 → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠))
4241impr 454 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)
43 iscfil2 25313 . . . 4 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
4443adantr 480 . . 3 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑠 ∈ ℝ+𝑦𝐹𝑢𝑦𝑣𝑦 (𝑢𝐷𝑣) < 𝑠)))
456, 42, 44mpbir2and 713 . 2 ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)) → 𝐹 ∈ (CauFil‘𝐷))
465, 45impbida 801 1 (𝐷 ∈ (∞Met‘𝑋) → (𝐹 ∈ (CauFil‘𝐷) ↔ (𝐹 ∈ (Fil‘𝑋) ∧ ∀𝑟 ∈ ℝ+𝑥𝑋 (𝑥(ball‘𝐷)𝑟) ∈ 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  wss 3962   class class class wbr 5147  cfv 6562  (class class class)co 7430  cr 11151  *cxr 11291   < clt 11292   / cdiv 11917  2c2 12318  +crp 13031  ∞Metcxmet 21366  ballcbl 21368  Filcfil 23868  CauFilccfil 25299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-po 5596  df-so 5597  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-1st 8012  df-2nd 8013  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-2 12326  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ico 13389  df-psmet 21373  df-xmet 21374  df-bl 21376  df-fbas 21378  df-fil 23869  df-cfil 25302
This theorem is referenced by:  equivcfil  25346  flimcfil  25361
  Copyright terms: Public domain W3C validator