Proof of Theorem cldregopn
| Step | Hyp | Ref
| Expression |
| 1 | | opnregcld.1 |
. . . . 5
⊢ 𝑋 = ∪
𝐽 |
| 2 | 1 | clscld 22983 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → ((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽)) |
| 3 | | eqcom 2742 |
. . . . 5
⊢
(((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) |
| 4 | 3 | biimpi 216 |
. . . 4
⊢
(((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) |
| 5 | | fveq2 6875 |
. . . . 5
⊢ (𝑐 = ((cls‘𝐽)‘𝐴) → ((int‘𝐽)‘𝑐) = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) |
| 6 | 5 | rspceeqv 3624 |
. . . 4
⊢
((((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)) |
| 7 | 2, 4, 6 | syl2an 596 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)) |
| 8 | 7 | ex 412 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))) |
| 9 | | cldrcl 22962 |
. . . . . . 7
⊢ (𝑐 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top) |
| 10 | 1 | cldss 22965 |
. . . . . . 7
⊢ (𝑐 ∈ (Clsd‘𝐽) → 𝑐 ⊆ 𝑋) |
| 11 | 1 | ntrss2 22993 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑐) |
| 12 | 9, 10, 11 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑐) |
| 13 | 1 | clsss2 23008 |
. . . . . . . 8
⊢ ((𝑐 ∈ (Clsd‘𝐽) ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑐) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) |
| 14 | 12, 13 | mpdan 687 |
. . . . . . 7
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) |
| 15 | 1 | ntrss 22991 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋 ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐)) |
| 16 | 9, 10, 14, 15 | syl3anc 1373 |
. . . . . 6
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐)) |
| 17 | 1 | ntridm 23004 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐)) |
| 18 | 9, 10, 17 | syl2anc 584 |
. . . . . . 7
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐)) |
| 19 | 1 | ntrss3 22996 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ Top ∧ 𝑐 ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑋) |
| 20 | 9, 10, 19 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑋) |
| 21 | 1 | clsss3 22995 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋) |
| 22 | 9, 20, 21 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋) |
| 23 | 1 | sscls 22992 |
. . . . . . . . 9
⊢ ((𝐽 ∈ Top ∧
((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) |
| 24 | 9, 20, 23 | syl2anc 584 |
. . . . . . . 8
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) |
| 25 | 1 | ntrss 22991 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧
((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐)))) |
| 26 | 9, 22, 24, 25 | syl3anc 1373 |
. . . . . . 7
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐)))) |
| 27 | 18, 26 | eqsstrrd 3994 |
. . . . . 6
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐)))) |
| 28 | 16, 27 | eqssd 3976 |
. . . . 5
⊢ (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)) |
| 29 | 28 | adantl 481 |
. . . 4
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)) |
| 30 | | 2fveq3 6880 |
. . . . 5
⊢ (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐)))) |
| 31 | | id 22 |
. . . . 5
⊢ (𝐴 = ((int‘𝐽)‘𝑐) → 𝐴 = ((int‘𝐽)‘𝑐)) |
| 32 | 30, 31 | eqeq12d 2751 |
. . . 4
⊢ (𝐴 = ((int‘𝐽)‘𝑐) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))) |
| 33 | 29, 32 | syl5ibrcom 247 |
. . 3
⊢ (((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴)) |
| 34 | 33 | rexlimdva 3141 |
. 2
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴)) |
| 35 | 8, 34 | impbid 212 |
1
⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))) |