Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldregopn Structured version   Visualization version   GIF version

Theorem cldregopn 35724
Description: A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
cldregopn ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 ↔ βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘)))
Distinct variable groups:   𝐴,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem cldregopn
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = βˆͺ 𝐽
21clscld 22902 . . . 4 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜π΄) ∈ (Clsdβ€˜π½))
3 eqcom 2733 . . . . 5 (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 ↔ 𝐴 = ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)))
43biimpi 215 . . . 4 (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 β†’ 𝐴 = ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)))
5 fveq2 6884 . . . . 5 (𝑐 = ((clsβ€˜π½)β€˜π΄) β†’ ((intβ€˜π½)β€˜π‘) = ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)))
65rspceeqv 3628 . . . 4 ((((clsβ€˜π½)β€˜π΄) ∈ (Clsdβ€˜π½) ∧ 𝐴 = ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄))) β†’ βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘))
72, 4, 6syl2an 595 . . 3 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴) β†’ βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘))
87ex 412 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 β†’ βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘)))
9 cldrcl 22881 . . . . . . 7 (𝑐 ∈ (Clsdβ€˜π½) β†’ 𝐽 ∈ Top)
101cldss 22884 . . . . . . 7 (𝑐 ∈ (Clsdβ€˜π½) β†’ 𝑐 βŠ† 𝑋)
111ntrss2 22912 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘) βŠ† 𝑐)
129, 10, 11syl2anc 583 . . . . . . . 8 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜π‘) βŠ† 𝑐)
131clsss2 22927 . . . . . . . 8 ((𝑐 ∈ (Clsdβ€˜π½) ∧ ((intβ€˜π½)β€˜π‘) βŠ† 𝑐) β†’ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑐)
1412, 13mpdan 684 . . . . . . 7 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑐)
151ntrss 22910 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐 βŠ† 𝑋 ∧ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑐) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) βŠ† ((intβ€˜π½)β€˜π‘))
169, 10, 14, 15syl3anc 1368 . . . . . 6 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) βŠ† ((intβ€˜π½)β€˜π‘))
171ntridm 22923 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) = ((intβ€˜π½)β€˜π‘))
189, 10, 17syl2anc 583 . . . . . . 7 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) = ((intβ€˜π½)β€˜π‘))
191ntrss3 22915 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑐 βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘) βŠ† 𝑋)
209, 10, 19syl2anc 583 . . . . . . . . 9 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜π‘) βŠ† 𝑋)
211clsss3 22914 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π‘) βŠ† 𝑋) β†’ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑋)
229, 20, 21syl2anc 583 . . . . . . . 8 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑋)
231sscls 22911 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((intβ€˜π½)β€˜π‘) βŠ† 𝑋) β†’ ((intβ€˜π½)β€˜π‘) βŠ† ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)))
249, 20, 23syl2anc 583 . . . . . . . 8 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜π‘) βŠ† ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)))
251ntrss 22910 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† 𝑋 ∧ ((intβ€˜π½)β€˜π‘) βŠ† ((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))))
269, 22, 24, 25syl3anc 1368 . . . . . . 7 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜((intβ€˜π½)β€˜π‘)) βŠ† ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))))
2718, 26eqsstrrd 4016 . . . . . 6 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜π‘) βŠ† ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))))
2816, 27eqssd 3994 . . . . 5 (𝑐 ∈ (Clsdβ€˜π½) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) = ((intβ€˜π½)β€˜π‘))
2928adantl 481 . . . 4 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ 𝑐 ∈ (Clsdβ€˜π½)) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) = ((intβ€˜π½)β€˜π‘))
30 2fveq3 6889 . . . . 5 (𝐴 = ((intβ€˜π½)β€˜π‘) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))))
31 id 22 . . . . 5 (𝐴 = ((intβ€˜π½)β€˜π‘) β†’ 𝐴 = ((intβ€˜π½)β€˜π‘))
3230, 31eqeq12d 2742 . . . 4 (𝐴 = ((intβ€˜π½)β€˜π‘) β†’ (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 ↔ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜((intβ€˜π½)β€˜π‘))) = ((intβ€˜π½)β€˜π‘)))
3329, 32syl5ibrcom 246 . . 3 (((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) ∧ 𝑐 ∈ (Clsdβ€˜π½)) β†’ (𝐴 = ((intβ€˜π½)β€˜π‘) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴))
3433rexlimdva 3149 . 2 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘) β†’ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴))
358, 34impbid 211 1 ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π΄)) = 𝐴 ↔ βˆƒπ‘ ∈ (Clsdβ€˜π½)𝐴 = ((intβ€˜π½)β€˜π‘)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3064   βŠ† wss 3943  βˆͺ cuni 4902  β€˜cfv 6536  Topctop 22746  Clsdccld 22871  intcnt 22872  clsccl 22873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-top 22747  df-cld 22874  df-ntr 22875  df-cls 22876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator