Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldregopn Structured version   Visualization version   GIF version

Theorem cldregopn 36373
Description: A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldregopn ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem cldregopn
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21clscld 22962 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽))
3 eqcom 2738 . . . . 5 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
43biimpi 216 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
5 fveq2 6822 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝐴) → ((int‘𝐽)‘𝑐) = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
65rspceeqv 3595 . . . 4 ((((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
72, 4, 6syl2an 596 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
87ex 412 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
9 cldrcl 22941 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
101cldss 22944 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝑐𝑋)
111ntrss2 22972 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
129, 10, 11syl2anc 584 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
131clsss2 22987 . . . . . . . 8 ((𝑐 ∈ (Clsd‘𝐽) ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑐) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
1412, 13mpdan 687 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
151ntrss 22970 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝑋 ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
169, 10, 14, 15syl3anc 1373 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
171ntridm 22983 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
189, 10, 17syl2anc 584 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
191ntrss3 22975 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
209, 10, 19syl2anc 584 . . . . . . . . 9 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
211clsss3 22974 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
229, 20, 21syl2anc 584 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
231sscls 22971 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
249, 20, 23syl2anc 584 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
251ntrss 22970 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
269, 22, 24, 25syl3anc 1373 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2718, 26eqsstrrd 3965 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2816, 27eqssd 3947 . . . . 5 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
2928adantl 481 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
30 2fveq3 6827 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
31 id 22 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → 𝐴 = ((int‘𝐽)‘𝑐))
3230, 31eqeq12d 2747 . . . 4 (𝐴 = ((int‘𝐽)‘𝑐) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)))
3329, 32syl5ibrcom 247 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
3433rexlimdva 3133 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
358, 34impbid 212 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  wss 3897   cuni 4856  cfv 6481  Topctop 22808  Clsdccld 22931  intcnt 22932  clsccl 22933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22809  df-cld 22934  df-ntr 22935  df-cls 22936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator