Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cldregopn Structured version   Visualization version   GIF version

Theorem cldregopn 33793
Description: A set if regularly open iff it is the interior of some closed set. (Contributed by Jeff Hankins, 27-Sep-2009.)
Hypothesis
Ref Expression
opnregcld.1 𝑋 = 𝐽
Assertion
Ref Expression
cldregopn ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Distinct variable groups:   𝐴,𝑐   𝐽,𝑐   𝑋,𝑐

Proof of Theorem cldregopn
StepHypRef Expression
1 opnregcld.1 . . . . 5 𝑋 = 𝐽
21clscld 21656 . . . 4 ((𝐽 ∈ Top ∧ 𝐴𝑋) → ((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽))
3 eqcom 2808 . . . . 5 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
43biimpi 219 . . . 4 (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
5 fveq2 6649 . . . . 5 (𝑐 = ((cls‘𝐽)‘𝐴) → ((int‘𝐽)‘𝑐) = ((int‘𝐽)‘((cls‘𝐽)‘𝐴)))
65rspceeqv 3589 . . . 4 ((((cls‘𝐽)‘𝐴) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((int‘𝐽)‘((cls‘𝐽)‘𝐴))) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
72, 4, 6syl2an 598 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴) → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐))
87ex 416 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 → ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
9 cldrcl 21635 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
101cldss 21638 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → 𝑐𝑋)
111ntrss2 21666 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
129, 10, 11syl2anc 587 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑐)
131clsss2 21681 . . . . . . . 8 ((𝑐 ∈ (Clsd‘𝐽) ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑐) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
1412, 13mpdan 686 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐)
151ntrss 21664 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝑐𝑋 ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
169, 10, 14, 15syl3anc 1368 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) ⊆ ((int‘𝐽)‘𝑐))
171ntridm 21677 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
189, 10, 17syl2anc 587 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) = ((int‘𝐽)‘𝑐))
191ntrss3 21669 . . . . . . . . . 10 ((𝐽 ∈ Top ∧ 𝑐𝑋) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
209, 10, 19syl2anc 587 . . . . . . . . 9 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ 𝑋)
211clsss3 21668 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
229, 20, 21syl2anc 587 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋)
231sscls 21665 . . . . . . . . 9 ((𝐽 ∈ Top ∧ ((int‘𝐽)‘𝑐) ⊆ 𝑋) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
249, 20, 23syl2anc 587 . . . . . . . 8 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)))
251ntrss 21664 . . . . . . . 8 ((𝐽 ∈ Top ∧ ((cls‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ 𝑋 ∧ ((int‘𝐽)‘𝑐) ⊆ ((cls‘𝐽)‘((int‘𝐽)‘𝑐))) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
269, 22, 24, 25syl3anc 1368 . . . . . . 7 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((int‘𝐽)‘𝑐)) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2718, 26eqsstrrd 3957 . . . . . 6 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘𝑐) ⊆ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
2816, 27eqssd 3935 . . . . 5 (𝑐 ∈ (Clsd‘𝐽) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
2928adantl 485 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐))
30 2fveq3 6654 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))))
31 id 22 . . . . 5 (𝐴 = ((int‘𝐽)‘𝑐) → 𝐴 = ((int‘𝐽)‘𝑐))
3230, 31eqeq12d 2817 . . . 4 (𝐴 = ((int‘𝐽)‘𝑐) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ((int‘𝐽)‘((cls‘𝐽)‘((int‘𝐽)‘𝑐))) = ((int‘𝐽)‘𝑐)))
3329, 32syl5ibrcom 250 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋) ∧ 𝑐 ∈ (Clsd‘𝐽)) → (𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
3433rexlimdva 3246 . 2 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐) → ((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴))
358, 34impbid 215 1 ((𝐽 ∈ Top ∧ 𝐴𝑋) → (((int‘𝐽)‘((cls‘𝐽)‘𝐴)) = 𝐴 ↔ ∃𝑐 ∈ (Clsd‘𝐽)𝐴 = ((int‘𝐽)‘𝑐)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wrex 3110  wss 3884   cuni 4803  cfv 6328  Topctop 21502  Clsdccld 21625  intcnt 21626  clsccl 21627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-top 21503  df-cld 21628  df-ntr 21629  df-cls 21630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator