| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fmpt2d | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fmpt2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| fmpt2d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| fmpt2d.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) |
| Ref | Expression |
|---|---|
| fmpt2d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmpt2d.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 2 | 1 | ralrimiva 3146 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
| 3 | eqid 2737 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | 3 | fnmpt 6708 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 6 | fmpt2d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
| 7 | 6 | fneq1d 6661 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
| 8 | 5, 7 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 9 | fmpt2d.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) | |
| 10 | 9 | ralrimiva 3146 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐶) |
| 11 | ffnfv 7139 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐶)) | |
| 12 | 8, 10, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ↦ cmpt 5225 Fn wfn 6556 ⟶wf 6557 ‘cfv 6561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-fv 6569 |
| This theorem is referenced by: cantnff 9714 limsupgre 15517 idaf 18108 curfcl 18277 ghmqusnsg 19300 ghmquskerlem3 19304 ghmqusker 19305 mat2pmatf 22734 m2cpmf 22748 pm2mpf 22804 clsf 23056 kgenf 23549 lgamf 27085 vmaf 27162 lgsdchr 27399 mirf 28668 suppovss 32690 omsf 34298 erdszelem6 35201 cdleme50f 40544 dochfN 41358 binomcxplemdvsum 44374 |
| Copyright terms: Public domain | W3C validator |