MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fmpt2d Structured version   Visualization version   GIF version

Theorem fmpt2d 6997
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.)
Hypotheses
Ref Expression
fmpt2d.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
fmpt2d.1 (𝜑𝐹 = (𝑥𝐴𝐵))
fmpt2d.3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
Assertion
Ref Expression
fmpt2d (𝜑𝐹:𝐴𝐶)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝑦,𝐶   𝑦,𝐹   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem fmpt2d
StepHypRef Expression
1 fmpt2d.2 . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝑉)
21ralrimiva 3103 . . . 4 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
3 eqid 2738 . . . . 5 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
43fnmpt 6573 . . . 4 (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
52, 4syl 17 . . 3 (𝜑 → (𝑥𝐴𝐵) Fn 𝐴)
6 fmpt2d.1 . . . 4 (𝜑𝐹 = (𝑥𝐴𝐵))
76fneq1d 6526 . . 3 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥𝐴𝐵) Fn 𝐴))
85, 7mpbird 256 . 2 (𝜑𝐹 Fn 𝐴)
9 fmpt2d.3 . . 3 ((𝜑𝑦𝐴) → (𝐹𝑦) ∈ 𝐶)
109ralrimiva 3103 . 2 (𝜑 → ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶)
11 ffnfv 6992 . 2 (𝐹:𝐴𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐹𝑦) ∈ 𝐶))
128, 10, 11sylanbrc 583 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cmpt 5157   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  cantnff  9432  limsupgre  15190  idaf  17778  curfcl  17950  mat2pmatf  21877  m2cpmf  21891  pm2mpf  21947  clsf  22199  kgenf  22692  lgamf  26191  vmaf  26268  lgsdchr  26503  mirf  27021  suppovss  31017  omsf  32263  erdszelem6  33158  cdleme50f  38556  dochfN  39370  binomcxplemdvsum  41973
  Copyright terms: Public domain W3C validator