![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fmpt2d | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. (Contributed by NM, 27-Dec-2014.) |
Ref | Expression |
---|---|
fmpt2d.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
fmpt2d.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) |
fmpt2d.3 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) |
Ref | Expression |
---|---|
fmpt2d | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmpt2d.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
2 | 1 | ralrimiva 3152 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉) |
3 | eqid 2740 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | fnmpt 6720 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
6 | fmpt2d.1 | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) | |
7 | 6 | fneq1d 6672 | . . 3 ⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵) Fn 𝐴)) |
8 | 5, 7 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
9 | fmpt2d.3 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → (𝐹‘𝑦) ∈ 𝐶) | |
10 | 9 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐶) |
11 | ffnfv 7153 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝐹‘𝑦) ∈ 𝐶)) | |
12 | 8, 10, 11 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ↦ cmpt 5249 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: cantnff 9743 limsupgre 15527 idaf 18130 curfcl 18302 ghmqusnsg 19322 ghmquskerlem3 19326 ghmqusker 19327 mat2pmatf 22755 m2cpmf 22769 pm2mpf 22825 clsf 23077 kgenf 23570 lgamf 27103 vmaf 27180 lgsdchr 27417 mirf 28686 suppovss 32697 omsf 34261 erdszelem6 35164 cdleme50f 40499 dochfN 41313 binomcxplemdvsum 44324 |
Copyright terms: Public domain | W3C validator |